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Abstract—With the increasing significance of software correct-
ness and security, automatic static analysis tools (ASATs) play
a more and more important role in software development due
to their ability and scalability. However, compared to dynamic
analysis methods, static tools often suffer from the severe problem
of generating high false positive rates, due to their analysis
mechanisms. To alleviate the false positive problem, many ap-
proaches have been proposed, which focus on manually extracted
features from code snippets and then prioritize real warnings
by means of statistics or machine learning techniques. However,
manual encoded features are insufficient to achieve satisfactory
performance across different datasets. In this study, we focus on
exploring the effectiveness of various code representation learning
(CRL) techniques in understanding the semantics of warnings
generated by ASATs. In particular, our large-scale empirical
study not only reveals that CRL models can effectively differ-
entiate buggy code snippets (i.e., containing warnings detected
by ASATs) from clean ones (the median of F1-score reaches
87.3% for binary classification, and reaches 77.4% for multi-class
classification), they are also promising in identifying false positive
warnings (the F1-score of best performer is 75.6%). Such findings
drive us to further design a novel approach named PRISM, to
PRIoritize Static warnings based on aggregating multiple CRL
Models to reduce the false positives generated by existing ASATs.
Extensive evaluations demonstrate that our designed approach
can outperform existing baselines significantly.

Index Terms—Static Bug Detector, False Positive Warnings,
Code Representation Learning

I. INTRODUCTION

Identifying software bugs is a significant while challenging
task, consuming about 50% of developers’ efforts [1]. Never-
theless, critical bugs can still remain unveiled even after years
of deployment. Static bug detectors like SpotBugs [2], Face-
book’s Infer [3], and Google’s ErrorProne [4]. are therefore
motivated, they have gained popularity and are extensively
used in industry to help detect potential issues early in
development. Static bug detectors are often designed based
on static analysis (e.g., data-flow and control-flow analysis or
AST-based pattern matching) , and can detect various types
of defects such as bad programming practices, performance
issues and vulnerability issues.

Despite the popularity and wide adoption of such tools, they
are still suffering from the limitation of achieving high false
positive rates, in which case the detected issues might not be

§This work was primarily undertaken by the author when she studied at
the Huazhong University of Science and Technology.

†Corresponding author.

real bugs that are concerned by developers. Developers may
regard some of the issues as merely “violations” or “warnings”
instead of “bugs”, so would many detectors define themselves.
For instance, as revealed by recent studies, statically detected
warnings might be overlooked by developers for a long period
in practice [5], [6]. To address such limitations, various
approaches have been proposed with the aim to prioritize
real buggy issues over false positive cases. For instance,
Kim et al. [7] proposed to prioritize warnings generated by
static bug detectors via mining software evolution histories.
Hanam et al. [8] utilized machine learning techniques to learn
and prioritize true positive warnings based on labeled training
datasets. Despite the fact that huge efforts have been made
towards this problem, reducing the false positives of static bug
detectors still remains to be a challenging task.

The past years have witnessed the rapid development of
representation learning techniques in natural language pro-
cessing [9], [10]. Thanks to the availability of massive code-
bases, it opens up new opportunities to utilize such advanced
techniques (e.g., Word2Vec [9], BERT [10]) to effectively
represent programs as distributed vectors in the domain of
software engineering. Such distributed vectors, encoding the
syntax or semantics of programs, are also known as code
embeddings. Code embeddings are often in well-structured
forms with a fixed length of vectors containing real numbers,
thus enabling the utilization of deep learning techniques to
further learn implicit while deep code features automatically.
Currently, code embedding has been successfully applied to
various software engineering applications, such as program un-
derstanding [11], bug detection [12], [13], automated program
repair [14], [15], and so on. Compared to conventional learning
models, which extracts engineered features from programs
and then utilizes machine learning models, the new paradigm
utilizing code representation learning (CRL) and deep learning
techniques (i.e., denoted as CRL-based techniques in this
study) has shown to be capable of achieving superior results
in many applications [11], [12], [13], [14], [15], [16].

However, CRL-based techniques have not been widely used
to reduce the false positive rate of ASATs, thus their effective-
ness have not yet been fully studied in this area. Hence, this
paper is therefore motivated to answer the following questions:
• RQ1: Can CRL-based techniques be utilized to detect bugs

and capture the buggy types?
• RQ2: Which CRL-based techniques can effectively differ-

entiate true positive warnings from false positive ones?



To answer these questions, this paper first performs a com-
prehensive study to evaluate and compare the effectiveness of
different CRL-based techniques in classifying good and buggy
code. In particular, we evaluate and compare seven different
CRL models in combination with six different neural network
models to recognize potential issues in large-scale open-source
projects. Moreover, we further investigate the feasibility of
utilizing CRL models to differentiate true positive warnings
from false positive ones generated by static bug detectors. Our
major findings are as follows:
• Existing CRL models can efficiently classify good and

buggy code, with FastText + BGRU achieving the optimum
results in binary bug detection (87.3% F1-score). Code-
BERT combined with a SoftMax layer outperforms other
models in multi-class bug classification, the optimal median
of F1-score can reach 77.4%.

• CRL-based techniques show promising results in differen-
tiating true positive warnings and false positive ones. The
median of F1 Score of the best model (i.e., Word2Vec along
with BLSTM) can reach 75.6%.
Inspired by our empirical study, we further designed a novel

approach named PRISM, to PRIoritize Static warnings via
aggregating CRL Models to help reduce the false positives of
ASATs. PRISM selects multiple top-performing CRL-based
techniques and aggregating their results by majority voting to
get final ranking and classification results. The results indicate
that, after PRISM ranking, the proportion of the true positives
among the top 500 reported warnings exceeds 90%. Com-
paring to two baselines HWP [7] and GP [17], the accuracy,
precision and F1-score of PRISM outperform HWP by 37.2%,
36.5%, 24.9%, and outperform GF by 28.2%, 28.2%, 39.8%,
respectively. Finally, the more models are aggregated, the
better performance PRISM achieves, demonstrating its great
extensibility to further reduce ASATs’ false positives.

Our major contributions are summarized as follows:
• Originality: To the best of our knowledge, we present

the first systematic and comprehensive study to explore
and exploit code representation learning techniques in the
application of static bug detectors. More importantly, we
focus on leveraging CRL models to reduce the false positive
cases generated by existing static bug detectors.

• Empirical Study: We perform a large-scale empirical study,
including seven CRL models and six neural networks, to
evaluate and compare their effectiveness in detecting static
bugs and identifying false positives. These results can serve
as a foundation for future advancements in this field.

• Approach: Based on our empirical study, a novel approach
named PRISM is designed to prioritize true positive warn-
ings among all warnings generated by static bug detectors.

• Dataset: We open-sourced our datasets and experimental
details to facilitate future research. [18]

II. BACKGROUND AND RELATED WORKS

A. Pruning False Positive Warnings
ASATs usually produce high false positive rate, making

users to suffer from long time on identifying true warnings.

False positive warnings of ASATs not only arise from analyt-
ical errors or overestimations but also encompass warnings
that developers will not act on, as developers think these
warnings are irrelevant to actual bugs or are too risky to
fix [19], [20]. Previous study have shown that 35%-91% of
warnings reported by ASATs are false positives that ignored
by developers [21]. Thus, it is hard for developers to perceive
valuable and actionable warnings in all detected warnings (i.e.,
positives cases). Driven by such reasons, several methods are
proposed to identify true positive warnings and prioritize them
in the reported warning lists, which enable us to filter out
warnings at the end of the list to reduce the false positive rate
of ASATs.

Early work rank warnings by referring to warning fix
history from source code repositories, such as the information
extracted from commit histories. For example, Kim et al.
proposed two history-based methods to differentiate the im-
portance of warnings [22], [7]. One is to use the lifetime of
warnings to measure their severities [22], that is, warnings
having shorter average fixing time will be ranked higher.
Another tool, named the HWP [7] algorithm, is to weight
the warning patterns according to the historical statistics for
warnings eliminated in different ways (i.e., fixed changes and
non-fixed changes). The weight of each warning pattern is
proportional to the number of warning instances from that
category that were eliminated by software changes, with fixed
changes contribute more than non-fixed changes. This kind of
techniques are based on the historical statistics and can easily
be utilized to weight warnings without other sophisticated cal-
culation. However, they are limited to scenarios with multiple
warning patterns. Besides, they are based on the assumption
that all warnings are homogeneous, which means that all
warnings belonging to one pattern are either false positives or
true positives without considering the contextual information.

Recent work benefits from the development of machine
learning [23], [24], [8], [21], [25], [26]. Specifically, they
usually design certain important program features and identify
whether the warnings are true positive or false positive utiliz-
ing machine learning technique . For example, Hanam et al.
differentiated true positives and false positives by creating
feature vectors based on code characteristics and identifying
warnings with similar code patterns [8]. Heckman et al.
performed a systematic study and drawn a conclusion that
important characteristics of warnings should be explored to
improve the performance of this task [21]. Subsequently, they
explored the effectiveness of 51 warning features obtained
by ASATs and 15 machine learning algorithms [27]. Fur-
thermore, many work proposed methods combining different
code features and machine learning algorithms [28], [29], [30],
[31], [32]. For example, Wang et al. performed a systematic
study on these works [17]. After studying 116 features from
10 related work, they identified 23 most important features,
which is so-called the Golden Features. Golden Features, such
as comment-code ratio [29](i.e., The ratio of the number of
comment lines to the total number of code lines in a program),
are examined to contribute most against other features. Fur-
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thermore, Yang et al. [32] analyzed Golden features using data
from Wang et al.. They found that various machine learning
techniques performed similarly, thus, simple machine learners
like SVM were recommended due to low cost and comparable
effectiveness compared to more complex methods. However,
Kang et al. conducted experiments and proved that due to
data duplication and data leakage, the effectiveness of Golden
Features is seriously overestimated[33]. They conducted ex-
periments and found that Golden Features was only slightly
better than random predictions.

B. Code Representation Learning

CRL models often accept a sequence as input, and map
each token or the entire sentence into a numeric vector
through unsupervised learning. The earlier CRL models are
often static, that is, the same token has only one semantic
meaning with the same vector representation, regardless of
their contexts. Common static CRL models are as follows:
• Word2Vec [9] is a classic unsupervised learning technique

to learn static embeddings of tokens, chosen for its extensive
use in software engineering(SE) tasks. [12], [16].

• FastText [34] is known for efficiency and handling Out-
of-Vocabulary issues [35], we choose it as its popularity in
academia and industry [36].

• GloVe [37] combines global matrix factorization with local
context, offering faster convergence and superior perfor-
mance compared to local-only models.

Later, contextual CRL models are proposed to solve the
problem of polysemy. These models assign different vectors
to tokens with varying semantics in different contexts.
• ELMo [38] utilizes bi-directional LSTM to generate token-

level embeddings, chosen as it is the first significant work
addressing polysemy issue.

• BERT [10] produces deep bidirectional, contextual, un-
supervised word representations through pre-training. It is
groundbreaking work significantly improves performance of
multiple tasks, including SE tasks [39].

• RoBERTa [40] is proposed to solve undertrained problem
of BERT and is well-performed in related work [41].

• CodeBERT [42] is dealt with natural language and pro-
gramming language applications, such as code search. It has
been extensively used in recent work [26], [43].
The above models also covers scratch models (i.e.,

Word2Vec, FastText, GloVe, ELMo) and pre-trained models
(i.e., BERT, RoBERTa, CodeBERT). Besides, CRL models
are often utilized together with various deep neural network
models collectively to fulfill different software engineering
tasks [16], [44], [45]. Li et al. [16] comprehensively compares
the performance of NN models in vulnerability detection ex-
periments, including Logistic Regression [46], one basic struc-
ture network(i.e., Multilayer Perception (MLP) [47]), two clas-
sic RNN models(i.e., Long Short-Term Memory (LSTM) [48],
Gated Recurrent Unit (GRU) [49]), two bidirectional RNN
models (i.e., BLSTM, BGRU [50]), a CNN model designed
for sequences (i.e., TextCNN [51]).

III. EMPIRICAL STUDY DESIGN

In this Section, we first introduce the study overview and
details of the designed research questions, then we present the
datasets that we collected and utilized in our empirical study.
Finally, we discuss how we perform the experiments.

A. Study Overview

Our study mainly contains three parts. First, we aim to
understand to what extent can existing CRL-based techniques
be utilized to recognize static bugs as well as their types. The
answers can lay the foundations for our subsequent investiga-
tions, in particular, exploring the feasibility of utilizing CRL
models, especially those well behaved ones, in differentiating
true warnings from false ones. If the results are positive, we
can be further guided to reduce the false positive rate of
existing ASATs by CRL-based techniques. Based on the above
design, we devise research questions in Section III-B.

B. Research Questions

[RQ-1] Can CRL-based techniques be utilized to detect bugs
and capture the buggy types? We select seven CRL models
and six neural network models, and combine them in pairs to
evaluate their performance on our manually-collected dataset
by SpotBugs [2]. The first task is to differentiate whether the
code snippets are buggy or not, and the second is to classify
different types of bugs.

[RQ-2] Which CRL-based techniques can effectively differ-
entiate true positive warnings from false positive ones? We
choose the well-performed CRL-based techniques based on the
results of the first research question, and evaluate their prac-
ticality and effectiveness of differentiating true positive and
false positive warnings on a real-world dataset [5]. Besides, we
verify the effectiveness of the trained CRL-based techniques
on a ground truth dataset [52] collected from Defects4J [53].

C. Datasets Collection

We utilize three datasets to answer the above research
questions. The first one is manually collected by us and serves
for the evaluation of the first research question. The second
and third datasets are used in the second research question.

TABLE I: Statistics of Buggy and Bug-Free Instances of the
Manually Collected Datasets ❶.

Bug Type⋆ STY PER BAD I18N COR MT SEC EXP TOTAL
# Buggy instances 15,848 15,274 3,178 2,859 2,344 1,375 775 738 42,391

# Bug-free instances 74,859 74,859
⋆ denotes abbreviations of eight bug types in SpotBugs and each type contains many bug pat-
terns. STY:’Dodgy style’, PER:’Performance’, BAD:’Bad practice’, I18N:’Internationalization’,
COR:’Correctness’, MT:’Multithreaded correctness’, SEC:’Security’, EXP:’Experimental’.[2]

1) Dataset ❶: We aim to cover more bug types with the
latest versions of projects when explore the effectiveness of
CRL-based techniques, so we manually collect a dataset for
the first research question. In particular, we choose to leverage
SpotBugs [2], a well-known static bug detector that has already
been widely adopted to analyze 51 large-scale projects. These
projects are all from the Apache Software Foundation collected
from GitHub, and each of them has a relatively large number
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TABLE II: Statistics of the Experimental Subjects in Dataset ❷.
Project Name # Stars # Forks # Commits # FW # UFW Project Name # Stars # Forks # Commits # FW # UFW

Guava [54] 42889 9520 5665 102 9859 Junit4 [55] 8213 3122 2480 95 245
Netty [56] 27961 13789 10636 5 172 Activiti [57] 8166 6553 10768 2219 26233
Druid [58] 24779 7934 6502 200 9105 Metrics [59] 7448 1779 3076 189 1584

Redisson [60] 17772 4321 6908 108 1970 Dagger [61] 7282 3037 703 22 87
Mybatis-3 [62] 16471 11098 3869 16 727 Swagger-Core [63] 6875 2053 3985 166 3426
CodeGen [64] 13739 5677 11463 9 289 CheckStyle [65] 6447 8052 10837 1 79

WebMagic [66] 10138 4019 1134 14 489 Error-Prone [4] 5751 645 5123 19 4194
Jedis [67] 10131 3597 1854 2543 8152 Netty-SocketIO [68] 5526 1458 844 85 412
Auto [69] 9505 1113 1365 8 296 TiTan [70] 5155 1040 4434 69 597

Clojure [71] 9202 1361 3364 42 1622 Netflix [72] 4483 2296 2898 21 72
# denotes the total number; #FW denotes the number of ”Fixed warnings”; #UFW denotes the number of ”Unfixed warnings” after data deduplication and processing.

of stars and forks, which means that the detected defects may
be more common or more widely used.

(i) Bugs Extraction. For each project, we first collect
the latest version of JAR and corresponding source code of
themselves and those of their dependencies via manually or
automatically download with Maven [73]. After analyzing all
projects, we extract the information provided by SpotBugs for
each detected bug (i.e., relative source code path, package
name, method name and number of lines where the bug is
located, bug pattern and bug type.), and remove duplicate bugs
based on these information. We further extract the surrounding
contextual code lines, i.e., before and after five lines of the
buggy lines. Utilizing a continuous 10 lines as code fragments
is a common practice as adopted by many studies in code
similarity comparing [74], [75], clone detection [76] and code
comprehension [77]. After collecting the bug instances, we
ruled out all buggy code snippets, and randomly selected ten
lines of code without any reported bugs as bug-free instances.
Finally, we de-duplicate data at the sequence level.

(ii) Code Normalization. As adopted by existing stud-
ies [78], [79], the normalization process is to assign a rep-
resentative token for code elements belonging to the same
category, plus a unique ID of the element. Specifically, we
change the customized identifiers class name, method name,
variable name, constants and fields into unified representations
separately. For example, the first customized class ‘A.B.C.D’
will be normalized to ‘class0’, while the second class is
normalized to ‘class1’ and so on. Following the above rules,
we normalize all instances utilizing JavaParser Library [80].

(iii) Pre-processing and Labelling. After data collection,
we flatten each normalized code snippet into a single line and
split the code into multiple tokens using JavaLang [81] to
obtain the raw input data. Then buggy instances are regarded
as positive instances with a label of ‘1’, those without bugs are
regarded as negative instances with a label of ‘0’ for binary
classification. For multi-class classification, the label of bug-
free is ‘0’ and the labels of instances corresponding to the eight
different bug categories are denoted as ‘1’-‘8’ respectively.
Table I summarizes dataset ❶ that we collect.

2) Dataset ❷: The second dataset is generated from dataset
collected by Liu et al. [5], which contains 16,918,530 warn-
ings, of which 88,927 are confirmed as fixed warnings (i.e.,
resolved by modifying specific lines), while the rest are
unfixed (i.e., warnings still present in the latest version of the

project). After checking the original dataset, we discovered
a high number of duplicate samples. Besides, the number of
unfixed warnings is an order of magnitude more than fixed
warnings. Thus, we further process the original dataset to build
dataset ❷ and make it suitable for our evaluation.

(i) Data Screening. For our experiment, we selected a
subset of the original data. We choose instances of the top
35 most starred Github project repositories to ensure high
data quality, and the 50 most frequently fixed warning patterns
from the original dataset, since Liu et al. mainly performed
their empirical study on these patterns and also only published
unfixed instances of these patterns in the original dataset [82].
As warnings of the selected 50 patterns in the top 35 well-
maintained projects tend to be fixed in time, the potential bias,
such as true positive warnings being fixed after the dataset
collection, can be reduced.

(ii) Data Pre-processing. Fixed and unfixed warnings are
extracted, deduplicated, normalized and tokenized in the same
way as how dataset ❶ was collected. Then fixed warnings
are regarded as true positive samples with label ‘1’, and
unfixed warnings are regarded as false positive samples with
label ‘0’. Consequently, dataset ❷ contains 5,933 true positive
samples and 69,610 false positives, statistical information of
the selected projects is shown in Table II.

3) Dataset ❸: We use a ground truth dataset collected
from Defects4J [52]. The author uses SpotBugs to analyze
projects contained in Defects4J and confirms the true bugs that
SpotBugs can detect through three steps: diff-based method,
fixed warning-based method and manual inspection. After
reproduction, we obtained 418 false positive bugs and 10 true
bugs reported by spotbugs.

D. Experimental Setup

Our experiments are mainly conducted on two servers, each
of which is equipped with a Ubuntu18.04 OS, 2 Intel Xeon
Gold 5117@2.00GHz CPU supporting 14 cores, 4 Nividia
Tesla-V100-SXM2-32GB graphics cards and 252GB memory.

Model Training. Our selected CRL models not only include
four scratch models (i.e., Word2Vec, FastText , Glove and
ELMo) and three pre-trained models (i.e., BERT, RoBERTa
and CodeBERT). The selected NN models MLP, LSTM, GRU,
BLSTM, BGRU and TextCNN. We do not choose graph-
based code representation learning models as they usually
represent data at the function level, we find that the results

We use ‘warning’ in dataset ❷ following the original paper.
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of graph models are often significantly worse than sequence-
based models on our data.

For scratch CRL models, we train CRL models on each
dataset with default hyperparameters, and perform token-level
experiment by combining CRL with NN models. For pre-
trained CRL models, we choose the default pre-trained mod-
els (i.e., ‘BERT-BASE-UNCASED’, ‘CODEBERT-BASE’ and
‘ROBERTA-BASE’) from HuggingFace [83] and fine-tune
them on our data respectively. During fine-tuning, we not only
conduct token-level experiments, but conduct sentence-level
experiments following existing studies [84], [85], [42]. Due
to configurations of the models, we exclude code snippets
whose length are larger than 512 for BERT and RoBERTa,
and exclude instances larger than 200 for CodeBERT.

Hyperparameter Tuning. We utilize grid search [86] for
hyperparameter adjustment of NN models, with a large number
of combinations of common values. These common values are
derived from empirical values from the experimental setup of
the original paper of NN models, the kaggle community [87]
and some related works [44], [16]. To facilitate the replication
of our experiments, we have made the tuned hyperparameters
and their specific values publicly available in the PRISM
project’s GitHub repository [18].

IV. EXPERIMENTAL RESULTS

In this Section, we present the experiments that we designed
to answer the research questions. For each experiment, we
state the objective and overview the execution details before
presenting the results.

A. Effectiveness of Different CRL-based Techniques on Static
Bug Detection

[Objective]: We investigate the capability of different CRL-
based techniques to detect bugs and differentiate bug types.
Our purpose is to study whether CRL-based techniques can
understand and simulate the decision-making logic of Spot-
Bugs. If the results are positive, they can hopefully further
discover errors in decision-making of SpotBugs.
[Experiment Design]: For both binary and multi-class classi-
fication, there are 45 sets of experiments and each experiment
is repeated for 10 times. During each experiment, we sample
and balance dataset ❶ by random sampling following an
existing study [88]. The training, validation and test set are
constructed and NN models are trained through Sierarchical
10-fold Cross Validation [89] to avoid the potential bias caused
by data sampling, model training and inference. Sierarchical
10-fold Cross Validation means that in each fold, the propor-
tion of the various categories in the original data is maintained.
It is effective to small datasets with multiple categories and is
suitable for our experiments.
[Results]: Fig. 1 and Fig. 2 present the medians of F1 scores
of different CRL-based techniques in binary bug detection
and multi-class bug detection. We use ‘CRL-NN’ to denote
the experiment of a CRL model combined with a NN model.
We observe that, for both binary and multi-class classification,

except for MLP, other NN models have demonstrated promis-
ing performance when combined with various CRL models.
For binary bug detection, we find that the median of the
F1 Scores of FastText-BGRU, GLoVe-GRU, Word2Vec-GRU
can achieve 87.3%, 87.0%, 87.0%, These models work well,
and can outperform almost all other models. For multi-class
bug detection, the median of the WaF scores of CodeBERT-
SOFTMAX is 77.4%, and that of FastText-GRU, FastText-
BGRU can reach 77.1%, 76.0%.

Code representations learning models demonstrate promis-
ing performance on detecting bugs and identifying various
types of static bugs. In particular, the achieved optimal me-
dian F1-score can reach 87.3% for binary classification and
77.4% for multi-class classification in recognizing specific
bug types.

We then analyze and compare the results in terms of CRL
models and NN models. For scratch CRL models, we find that
FastText outperforms other scratch CRL models, ELMo and
Word2Vec enjoy good learning abilities, while GLoVe per-
forms less stable, indicating that model with low training cost
is easier to converge and suitable for static bug detection. For
pre-trained CRL models, CodeBERT and RoBERTa perform
significantly better than BERT, indicating that pre-training
models on similar datasets can help improve the effectiveness
on downstream tasks. With respect to different NN models,
we observe that the effectiveness of scratch CRL models can
be improved when combined with RNN models, especially
with GRU and BGRU, some shallow-layer CRL models(i.e.,
FastText) even achieve similar performance with complex deep
models(i.e., CodeBERT). Besides, Pre-trained CRL models
will outperform their counterparts when combined with the
bidirectional NN models or TextCNN. Furthermore, we ob-
serve that MLP performs significantly poorer than the others,
indicating that feature extraction layers of NN is necessary
when learning code sematics.

[RQ1]. For CRL models, FastText outperforms other scratch
models in terms of both the effectiveness and stability.
It performs better when combined with RNN. CodeBERT
and RoBERTa outperform BERT, and perform better when
combined with BRNN and TextCNN. For NN models, RNN
models perform better, MLP gains the poorest performance
and might not be suitable for the task of static bug detection.

B. Differentiating True Positive and False Positive Warnings

[Objective]: Our aim is to explore which CRL-based tech-
niques is more effective in distinguishing between true positive
and false positive warnings. Based on the results, we can
use well-performed CRL-based techniques to reduce the false
positive rate of static detectors to a certain extent.
[Experiment Design]: Due to the poor performance of MLP
as shown in Section IV-A, we exclude it and perform the
remaining 38 sets of experiments. Each set of experiments
is also performed for 10 times. During each experiment, we
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Fig. 1: F1 Score of Binary Bug Detection with CRL-based Techniques. ‘Pretrained-Softmax’ denotes sequence-level experiments
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Fig. 2: Weighted-Average F1(WaF) score of Multi-class Detection with CRL-based Techniques.

balance dataset ❷ and randomly divide the balanced data into
a ratio of 6:2:2 for training, validating and testing respectively.
[Results]: Fig. 3 shows the capabilities of different learning
models on the task of distinguishing true positive warnings
from false positive ones. For scratch CRL models, we can
observe that Word2Vec, FastText is able to generate relatively
stable and good results comparing to others. Almost all
medians of F1 Score of them can reach or exceed 75%.
However, the results of the remaining CRL models are less
stable, especially when we utilize unidirectional RNNs (i.e.,
GRU, LSTM) with them, which may be caused by the limited
learning abilities of unidirectional RNNs. For pre-trained CRL
models, sequence-level experiments demonstrate poor perfor-
mance. Taking BERT combined with a SoftMax layer(i.e.,
BT-S) as an example, BT-S is hard to converge during fine-
tuning. However, when combining feature extraction layers
(i.e., BGRU) with BERT in token-level experiments, its learn-
ing ability has been improved a lot, indicating that sequence
embeddings are not suitable for the task. For NN models, the
results of BGRU, BLSTM and TextCNN outperform that of
GRU and LSTM, and medians of the F1 Score of the formers
all reach 75%.

Among all CRL-based techniques, we find that static CRL
models combined with bidirectional RNNs or CNN can obtain
the best and most stable results. For one thing, applying a
static CRL model with low training overhead is beneficial
to represent the unified structural features of the same kind
of warnings, and thus may reduce the difficulty of training
NN models. For another, applying a bidirectional RNN or
CNN model can extract and capture the data dependencies
and control dependencies between tokens in each warning
snippet, thereby improving the recognition ability of the

model. Besides, the contextual CRL models combined with the
bidirectional RNNs or CNN (e.g., BERT-BGRU) also perform
well but require a high training cost, and sometimes the
optimal hyperparameters are hard to be found in a short period.
In addition, other combinations, such as static CRL models
combined with unidirectional RNNs, pre-trained models com-
bined with SoftMax achieve poor or unstable performance.

[RQ2]. Static CRL models, including Word2Vec, FastText
combined with BGRU, BLSTM, TextCNN can achieve the
highest and most stable F1 Score in distinguishing true
positive and false positive warnings. Contextualized CRL
models, including ELMo, BERT, CodeBERT, RoBERTa com-
bined with TextCNN perform well but requires high training
costs. In general, static CRL models along with bidirectional
RNN models perform best.

Further, we test CRL-based techniques trained with true
positive and false positive warnings on dataset ❸ to see if
they work in real scenarios. Table III, Table IV, Table V
shows the efforts to discover 60%, 70%, 80% of true positive
bugs. Effort refers to the number of bugs that need to be
checked as a proportion of all reported bugs. We find that
BERT-GRU and CodeBERT-GRU marked all warnings as
true, so we excluded these outliers. From the results we can
observe that after sorting by CRL-based techniques, we can
find 60%, 70%, 80% of the true bugs at the earliest positions
(i.e., 22.66%, 26.40%, and 29.67%) of the bug list. The best
results are obtained by Word2Vec-TextCNN, GLoVe-BLSTM,
and BERT-BGRU respectively, which are consistent with our
previous conclusions.

Figure 4 shows the proportion of true bugs found in the
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(a)Word2Vec.
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(b)FastText.

G
R

U

B
G

R
U

L
S

T
M

B
L

S
T

M

T
E

X
T0.66

0.68

0.70

0.72

0.74

0.76

(c)GLoVe.
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(d)ELMo.
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(a)BERT.
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(b)CodeBERT.
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(c)RoBERTa.
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Fig. 3: F1 Score of Different CRL-based Techniques on Differentiating True Positive and False Positive Warnings.
TABLE III: Effort Required to Detect 60% True Bugs Across Different CRL-based Techniques. (* marks outliers)

Word2Vec FastText GLoVe ELMo BERT CodeBERT RoBERTa
GRU 62.85 52.10 50.93 46.26 17.99* 4.44* 26.64
BGRU 49.53 48.36 68.22 46.50 25.23 60.51 33.64
LSTM 46.73 51.87 45.56 57.24 79.21 43.94 62.85
BLSTM 46.03 41.59 23.13 39.95 34.58 43.93 62.15
TextCNN 22.66 45.09 51.64 46.50 65.65 67.29 77.57

TABLE IV: Effort Required to Detect 70% True Bugs Across Different CRL-based Techniques.
Word2Vec FastText GLoVe ELMo BERT CodeBERT RoBERTa

GRU 70.56 60.05 61.92 56.54 18.22* 4.67* 26.87
BGRU 56.07 57.94 75.93 48.60 26.87 73.13 38.79
LSTM 51.64 68.46 45.79 63.08 82.24 75.23 65.89
BLSTM 55.14 57.71 26.40 45.09 41.59 75.23 68.69
TextCNN 38.08 45.33 61.68 67.76 67.06 76.17 79.21

TABLE V: Effort Required to Detect 80% True Bugs Across Different CRL-based Techniques (%).
Word2Vec FastText GLoVe ELMo BERT CodeBERT RoBERTa

GRU 72.90 64.02 64.49 60.75 18.46* 4.91* 77.57
BGRU 74.30 64.72 83.18 60.51 29.67 78.27 48.13
LSTM 65.89 70.09 46.03 71.96 85.05 77.58 72.66
BLSTM 60.05 66.36 36.45 45.79 70.56 77.57 70.33
TextCNN 50.93 61.68 67.76 73.36 84.58 80.37 82.24

top N predicted warnings to all true positives when we use
the best CRL-based technique(i.e., GLoVe-BLSTM) to sort
warnings. From the figure, we find that when predicting the top
60 warnings out of all 428 warnings, the optimal CRL-based
technique has found almost 50% of the true positives. When
predicting the top 100 warnings, it has found almost 60% of
the true positives. When predicting the first 150 warnings,
it has found almost 80% of the true positives. Such results
confirm that CRL-based techniques can assist static detection
tools to report true positives preferentially, thereby reducing
their false positive rates.

However, although the model quickly find 80% of true
positives, 90% and 100% of true positives are not found until
top 325 warnings and top 335 warnings are predicted. This
may be because some types of true positives are not easily
recognized and prioritized by the model. Therefore, we hope
to further improve the CRL-based techniques.
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Fig. 4: The Number of True Positive Bugs in Top-N Predic-
tions of the Best Model

V. PRISM: PRIORITIZING STATIC WARNINGS BASED ON
MULTIPLE CRL MODELS

[Objective]: Based on the above empirical findings, we
investigate whether we can further reduce the number of false
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positives generated by static bug detectors. Our goal is to sort
as many true positives as possible first. Therefore, we design
the following approach, and further compare it with existing
state-of-the-art baselines.

[Approach]: To fully exploit the advantages of multiple
CRL models and improve the effectiveness of single CRL-
based technique, we devise a simple yet effective approach
named PRISM, to PRIoritize Static warnings based on mul-
tiple CRL Models via utilizing the Majority Voting strat-
egy [90]. Specifically, we integrate M models that are reported
to achieve the optimum results (in terms of F1 Score) as
revealed in section IV-B. In particular, two strategies are
adopted for integration. The first one is hard voting. For a
specific warning, according to all labels predicted by the top
M models, label with the most occurrences is taken as the final
predicted label of this warning. The second one is soft voting.
For a warning, the average value of the predicted probabilities
for each category generated by the M models is calculated,
label corresponding to the category with the largest average
value is taken as its label. Here each model is given the same
weight and contributes equally to the ensemble voting results.
Finally, a warning sorted list as well as the classification results
of the tested warnings can be obtained according to their
probability predicted by PRISM.

[Baselines]: We choose a historical statistics-based method
called HWP algorithm [7] (denoted as HWP), and four ma-
chine learning models trained on six ”Golden Features” [17]
(denoted as GF) as our baseline models.

For HWP, we consider warnings from the highest-weighted
patterns as true positives, while treating the rest as false
positives. For GF, we choose four classic machine learning
algorithms including Support Vector Machine(SVM) [91],
RandomForest(RF) [92], DecisionTree(DT) [93], KNeigh-
bors(KN) [94] to conduct experiments. In particular, given the
limited information from the original dataset [82], we could
only gather partial ’Golden Features’, including ’warning
context in file’, ’warning context for warning type’, ’defect
likelihood for warning pattern’, ’warning pattern’, ’warning
type’, and ’warning priority’. Extracted using information
from Git commits and static bug detectors, these features
were refined by us, particularly the first three, to address
label leakage issues highlighted in [33]. Specifically, while
calculating these three features, an instance is marked as fixed
only if its fixed date is before the revision under analysis,
regardless of whether it has been fixed by the day of data
collection.

[Experiment Design]: To evaluate the effectiveness of our
proposed approach, we use Precision@N and conventional
machine learning metrics (i.e., Accuracy, Precision, Recall
and F1 Score). Precision@N denotes the proportional of true
positive warnings (i.e., real warnings) to the top N warnings
in the ranking list (N=10, 50, 100...) [95].

In evaluating PRISM, we aggregate the top M models, and
perform Hard voting and Soft voting experiments respectively.
Each experimental setup is denoted as PRISM TopM

H/S . For
each setup we repeat experiment for 10 times and final

TABLE VI: Precision@N of PRISM and the Best CRL-based
Technique.

PRISM Top3
S PRISM Top5

S PRISM Top7
S PRISM Top9

S W2V-BLSTM
N=10 88.00% 94.00% 100.00% 97.00% 84.00%
N=50 93.80% 96.00% 96.60% 96.40% 86.60%
N=100 95.50% 95.80% 96.80% 96.30% 87.20%
N=500 91.60% 91.70% 91.80% 91.60% 86.78%
N=1000 79.30% 80.60% 80.90% 81.00% 78.52%
N=2000 57.30% 57.50% 57.50% 57.60% 57.33%

results are the averaged values. Training, validating and test
data are consistent with those in Section IV-B. In evaluating
GF, for experiments using SVM, RF, and DT, we employ
SKLearn’s default hyperparameters [96]. For KN, we test
four hyperparameter sets, varying the number of neighbors
(1, 3, 5, 10) while keeping other parameters at their defaults.
We also perform each experiment for 10 times to reduce the
potential bias. In evaluating HWP [7], we set the variable K
to represent the number of true warning patterns and evaluate
the performance of HWP under different values of K.

[Results]: (1) Differentiating True Positive and False
Positive Warnings

As shown in Table VI, when N is less than 500, all results
almost approach or exceed 90%. Besides, the presicion@N
drops as N grows, which shows that we have a high probability
to obtain the most real and important warnings that need to
be fixed at the top of warning prioritizing list.

The comparison results of PRISM and GF baseline are
presented in Table VII. We can find that PRISM can obtain the
highest F1 Score, Accuracy, Precision when the top-9 models
are combined together and soft voting is performed. The top-
7 combined models with soft voting and the top-9 combined
models with hard voting also can obtain good prediction
results. F1 Scores of the top three best performers exceed those
of W2V-BLSTM by 9.3%, 9.3%, 9.3%, and exceed those of
GF-SVM by 39.8%, 39.8% and 39.8%. The results show that
the effectiveness of PRISM is promising, and will get better
as the number of integrated models (i.e., M) grows. However,
the recall of PRISM drops as M grows. When M reaches 9,
the recall values of PRISM do not significantly exceed that
of W2V-BLSTM. Besides, the precision of PRISM increases
as M grows. Such results show that our approach is very
sensitive to false positives, once the number of the aggregated
models increases, the number of misidentified false warnings
decreases faster than the number of correctly identified true
warnings.

Fig. 5 shows the comparison between the results of PRISM,
the HWP baseline and W2V-BLSTM. The performance of
PRISM and W2V-BLSTM is invariant to the changes of K,
and thus the results of them are displayed as straight lines.
From the results, we can observe that both PRISM and W2V-
BLSTM perform significantly better than HWP. F1 Score of
PRISM Top9

S , PRISM Top9
H , PRISM Top7

S and W2V-BLSTM
outperform HWP by 24.9%, 24.8%, 24.8% and 14.2%. How-
ever, one metric, on which PRISM fails to outperform HWP
when K grows, is recall. This can be intuitively understood,
as most of the warnings are already included and considered
as true positives when K is close to the number of all warning
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TABLE VII: Performance of PRISM against GF Baselines and the Best CRL-based Technique.
Approach PRISM Top3

H PRISM Top5
H PRISM Top7

H PRISM Top9
H PRISM Top3

S PRISM Top5
S PRISM Top7

S PRISM Top9
S

Recall 77.40% 75.86% 75.46% 73.44% 76.05% 75.38% 74.70% 72.34%
Precision 79.62% 84.83% 89.86% 94.47% 81.33% 88.51% 92.48% 96.40%
F1-score 78.50% 80.11% 82.03% 82.64% 78.61% 81.41% 82.65% 82.66%
Accuracy 78.79% 81.16% 83.47% 84.57% 79.30% 82.80% 84.32% 84.82%
Approach W2V-BLSTM GF-SVM GF-RF GF-DT GF-KN-1 GF-KN-3 GF-KN-5 GF-KN-10

Recall 78.07% 47.01% 45.01% 41.30% 43.21% 44.12% 44.13% 41.34%
Precision 73.34% 75.20% 68.29% 64.12% 68.13% 68.51% 67.48% 70.13%
F1-score 75.60% 59.11% 54.03% 50.62% 53.61% 54.41% 53.05% 52.18%
Accuracy 74.80% 66.14% 62.71% 59.13% 61.20% 62.10% 61.12% 61.34%

⋆ H, S denote PRISM utilizes hard voting and soft voting. TopM denotes combing top M CRL-based techniques with the best performance. Results of
the top 3 best performers of PRISM are shown in bold. W2V-BLSTM denotes Word2Vec combined with BLSTM, and is the best CRL-based technique.
GF denotes the Golden Features and SVM, RF, DT, KN denotes Support Vector Machine, RandomForest, DecisionTree, KNeighbors. GF-KN-T denotes
applying KNeighbors on the golden features with M neighbors.
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Fig. 5: Performance of PRISM against HWP Baseline and
the best CRL-based Technique. S/H-Top-M denotes PRISM
under the setting of soft/hard voting, combining top M best-
performed CRL-based techniques.

patterns provided by FindBugs. We also observe an interesting
finding that the accuracy and F1 Score of HWP increase when
K is less than 250, and decrease when it exceeds 250, which
means true positive warnings are most likely to fall into the
250 most important patterns evaluated by HWP. Besides, the
precision of HWP always decreases, which means the number
of false positive instances significantly increases when we
consider more warning pattern as true positive ones.

PRISM can achieves good performance on differentiating
true warnings and false ones. The scores of Precision@N
of PRISM under all experimental setups exceed 90% when
N is less than 500. Besides, accuracy, precision and F1
Score of PRISM outperform HWP by 37.2%, 36.5%, 24.9%,
outperform the GF by 28.2%, 28.2%, 39.8%, outperform the
best CRL-based technique by 13.4%, 31.4%, 9.3%.

(2) Prioritizing True Bugs.
We test PRISM on dataset ❸. Figure 6 shows that after

different models sort the warnings detected by static detection
tools, the proportion of true positives found in the top N
predicted warnings to all true positives. Compare to single
CRL-based technique, PRISM can indeed find more true bugs
earlier. PRISM aggregated by the top 5 models can find almost

90% of true positives in the top 210 warnings and almost
100% of the top 220 warnings. Such results means that we
can filter out nearly half of the false positive warnings. It is
very meaningful as static detection tools often report tens of
thousands of warnings in large-scale real-world projects.
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Fig. 6: The Percentage of True Positive Bugs in Top-N
Predictions of the Best Model and PRISM

Table VIII indicates the effort we need to find the 60%-
100% real bugs in the sorted list of different models. Please
note that the baseline results reported in our table are all
optimal parameter settings. We find that the performance of
PRISM aggregated by 5 models and soft voting performs best,
When identifying all real bugs, PRISM Top5

S required 48.9%
less effort than the best CRL-based technique, 6.2% less than
GF, and 87.9% less than HWP.

It is meaningful to aggregate models, which can detect all
real bugs earlier than a single CRL-based technique and
baselines. Besides, PRISM can also improve the precision
of single CRL-based technique while maintaining the recall
of it.

VI. DISCUSSION
A. Flexibility and Application of PRISM

PRISM is designed with flexibility to adjust the number
and complexity of its integrated models, allowing a balance
between precision and computational overhead. In the sce-
narios requiring high precision, like safety-critical systems,
improving precision is prioritized over saving computational
overhead. However, in resource-limited environments, PRISM
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TABLE VIII: Effort Required to Detect True Bugs, the Best CRL-based Technique and Baselines on Defects4J(%).
# True Bugs The Best Model PRISM Top2

S PRISM Top3
S PRISM Top4

S PRISM Top5
S PRISM Top7

S

60% 23.13 30.14 33.87 27.33 21.02 29.67
70% 26.40 46.96 44.62 31.07 21.96 31.30
80% 36.44 48.36 57.71 50.23 36.21 57.71
90% 75.93 51.63 65.65 51.63 49.06 66.35

100% 78.27 63.78 78.27 56.77 52.57 70.56
# True Bugs PRISM Top9

S GF-SVM GF-RF GF-DT GF-KN HWP
60% 22.66 83.17 74.53 54.90 54.90 16.35
70% 27.33 84.81 74.76 55.14 55.14 18.45
80% 50.70 85.51 75.00 55.37 55.37 50.00
90% 56.77 93.45 80.84 91.35 55.60 86.68

100% 71.72 94.15 95.32 92.52 55.84 98.83

can reduce the number of integrated models to reduce cost
while still achieving precision required by the system.

While the integration of multiple models in PRISM initially
leads to higher costs, it offers long-term savings of manpower
and time. First, PRISM significantly lowers the cost of man-
ual bug verification and provides reliable bug for decision-
makers, reducing the risk of erroneous decisions. Second, as
computing technology advances and hardware costs decrease,
these expenses are expected to become more acceptable in the
long term. In the future, we will optimize the efficiency and
overhead of PRISM through more effective training strategies,
learning algorithm, and hardware acceleration technologies.

B. Threats to Validity

Threats to external validity. First, model selection can
affect how well our findings can be applied to other types of
models. To mitigate this threats, when selecting models, we
follow two criteria: 1.Comprehensiveness: The chosen models
cover various types and differ in complexity and character-
istics, ensuring a broad representation of approaches. 2.Ef-
fectiveness: The chosen models include SOTA transformer-
based models like BERT, CodeBERT, and RoBERTa, as well
as foundational models from the past. These models have been
proven effective in numerous software engineering tasks. Sec-
ond, our study relies on pre-processed and accurately labeled
data, which may not always be readily available in real-world
scenarios.This limitation could impact the generalizability of
our findings to practical applications. Future research could
explore methods less reliant on extensively pre-processed and
labeled data, possibly incorporating automated preprocessing
or advanced machine learning techniques that require less
manual intervention.

Threats to internal validity. First, since the promising
results of neural networks are often caused by the potential
data duplication and data leakage, on one hand, we rigorously
deduplicate three datasets we used. For dataset ❶, we remove
all duplicated JAR packages and perform strict deduplication
based on the location information of bugs. For dataset ❷, we
consider warnings that in the same location and under the
same bug pattern, but in different commits, as likely duplicates
and perform strict deduplication. On the other hand, we also
refined three of ”Golden Features” to eliminate data leakage
problems proven by existing research [33]. Second, there may
be a risk of overfitting of PRISM. We mitigate it by testing

models with different data source covering different projects.
We also use methods like early stopping, Dropout and Adam
adaptive learning rate algorithm.

Threats to construct validity Method of labeling false
positives and true positives for dataset ❷ may not be ab-
solutely accurate. Disappearing warnings might not indicate
true positives, possibly due to random code changes, and
persistent warnings might not be false positives, as they could
be true warnings that consistently unaddressed. To mitigate
these errors, our study exclude warnings that disappear due
to file or function deletions, since labels for these warnings
cannot be determined. We also select the most starred 35
projects and the 50 most commonly fixed bug patterns to
ensure that true positive warnings can be resolved as quickly as
possible. Future efforts will focus on developing more effective
data cleaning and labeling techniques to enhance data quality.

VII. CONCLUSION

We have conducted comprehensive experiments on CRL
techniques on detecting bugs and differentiating static analysis
warnings, and further conducted experiments to exploit code
embedding techniques on warning prioritization. Based on our
detailed experimental research, we observe that CRL models
can effectively learn distributed representations for static warn-
ings, and can also differentiate true positive and false positive
warnings effectively. Motivated by such empirical results,
we further designed a novel approach, which can prioritize
true positive warnings via exploiting CRL models. Extensive
experiments demonstrate that our proposed approach, PRISM,
can outperform existing baselines significantly.
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