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Abstract—Deep Learning (DL) has been widely applied in
various fields. Unlike traditional software, DL programs possess
the “black box” characteristic that can make it challenging for de-
velopers to debug when anomalous behaviors arise. In particular,
silent bugs, a type of bugs in DL programs, can lead to erroneous
behaviors without causing system crashes or suspensions, and
they do not display error messages to users. This makes silent
bugs more difficult for developers to discover, locate, and fix.
In this paper, we present the first detailed study of silent bugs
in PyTorch programs. We collect 14,523 posts from the official
PyTorch forum and use a LLM-based semi-automated approach
to filter the silent bugs. By analyzing the symptoms, root causes,
and patterns of silent bugs, we have derived several important
findings and implications: (1) most silent bugs cause abnormal
outputs, which requires the design of more flexible test oracles to
detect them, (2) the wide range of symptoms and root causes do
not necessarily have one-to-one correspondences, which makes
detecting and debugging silent bugs more challenging, (3) silent
bugs exhibit common bug patterns, such as redundant, missing,
or misplaced operations. Building upon these findings, we design
and implement an extensible rule-based tool PYSIASSIST to help
developer debug and resolve silent bugs. Evaluation results show
that PYSIASSIST achieves 92.4% precision and 85.3% recall,
outperforming existing techniques.

Index Terms—Silent bugs, PyTorch Programs, Bug taxonomy.

I. INTRODUCTION

Deep learning (DL) techniques have received widespread
adoption in recent years. The systems built with machine/deep
learning algorithms are often referred to as “software 2.0”,
as they rely on trained models to make decisions rather
than human-written code. Unlike traditional software, where
developers encode program logic in human-readable source
code, trained DL models define decision logic using a set
of unreadable neural networks and weights. The “black-box”
nature of DL models makes it extremely challenging to debug
when they exhibit unexpected behaviors.

Silent bugs, which is also referred as functional or numerical
errors, are defined as bugs that do not result in system
crashes, hangs, or displays error messages to users, but can
lead to incorrect behavior [1]. Silent bugs in DL programs
may cause a range of problems, such as erroneous output,
low accuracy, training that does not converge, extra execution
time, or excessive memory usage. These problems could affect
the normal execution of applications, and cause catastrophic
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results if DL models are deployed in safety-critical domains
(e.g., autonomous vehicles). Silent bugs are more problematic
than more traditional bugs [1] so it is important to deal with
silent bugs in DL programs properly and timely. However, due
to the “black box” and stochastic nature of DL models, silent
bugs are particularly difficult to debug and fix.

Several studies investigated silent bugs in deep learning
frameworks (e.g. Keras[2] and TensorFlow[3]), revealing that
these bugs can cause problems such as performance degra-
dation, incorrect calculations, and incorrectly displayed mes-
sages [1]. However, existing studies only focus on silent bugs
in the DL frameworks and did not investigate silent bugs
in user programs. On the other hand, recent research has
investigated the characteristics of bugs in DL user programs [4,
5, 6]. However, these studies focused on the characteristics
(e.g., symptoms, root causes, and taxonomy) of all kinds of
bugs where many of them having obvious symptoms (e.g.,
compilation errors, crashes, or assertion failures). They did not
specifically target silent bugs, and hence only captured partial
characteristics of silent bugs in DL programs. As it will be
shown in our evaluation, the state-of-the-art general-purpose
bug detector CodeGuru [7] can only discover 1.5% silent bugs.
Moreover, prior studies focused on specific DL bugs (e.g.,
performance bugs [8, 9, 10], API usage bugs [11], program
failure [12]). A comprehensive study of the characteristics
of silent bugs in DL programs will help developers and
researchers to better understand, localize and fix these bugs.

Studying silent bugs in DL programs is important due to
two reasons. (1) Silent bugs affect all developers regardless
of their expertise levels. For example, our study found that
even developers with more than a year of experience may still
raise questions regarding “simple” silent bugs [13, 14, 15, 16];
(2) Compared to other DL bugs, it is difficult to differentiate
between a misjudgment and the underlying root cause. For
example when zero_grad() is missing, gradients will
accumulate continuously, leading to incorrect final training
results. If the developers were to optimize the dataset, the
training results might improve, which could mislead them into
thinking that the root cause is the unoptimized dataset.

To bridge the gap in understanding silent bugs in DL user
programs, we present a comprehensive study of silent bugs
in PyTorch [17] programs. Several popular DL frameworks
(PyTorch [17], Keras [2], and TensorFlow [3]) are widely
used to write DL applications. Our study focuses on PyTorch
because: 1) PyTorch is the most widely adopted DL framework



according to the statistics of AssemblyAI in 2023 [18], 2)
compared to TensorFlow, PyTorch exhibits better compatibility
across different versions [19], which reduces the occurrence of
silent bugs caused by version discrepancies, and 3) compared
to other DL frameworks (e.g., Keras), PyTorch has its indepen-
dent official forum [20] with an active user community, which
provides a large number of high-quality posts, discussions, and
solutions for fixing bugs. In addition, there are many causes
for the occurrence of silent bugs in PyTorch programs, such as
errors in dataset annotation and issues with hardware facilities.

To understand the silent bugs in PyTorch programs, we
collected 14,523 posts from the PyTorch official forum. Since
manually analyzing and filtering all posts are too time-
consuming, we use Large Language Model (LLM) to assist
in the filtering process. LLM (i.e., BingChat in this paper),
achieves a 74.4% accuracy in identifying irrelevant posts,
which helps save time and effort with reasonable accuracy.
Finally, we collect 365 silent bugs for further investigation.

By analyzing the symptoms, root causes and bug patterns
of the silent bugs, we have derived several key findings: (1)
around 80% of silent bugs lead to abnormal outputs, (2)
improper operations during training and execution are the
main reasons causing silent bugs, and (3) silent bugs exhibit
common patterns (e.g., redundant, missing or misplaced op-
erations). Developers of PyTorch programs may benefit from
the taxonomy derived from our study. It can assist them in
understanding the nature of silent bugs in their code and pro-
vide guidance for debugging and fixing such issues. Our study
also provides useful development suggestions for developers,
especially novice developers, to prevent silent bugs.

Due to the silent nature, it is hard for developers, especially
novice developer, to discover, debug and resolve silent bugs.
To help developer in resolve PyTorch Silent bugs, we design
and implement a static programming assistant tool called
PYSIASSIST. PYSIASSIST is not designed to detect silent
bugs in the wild, instead, it is an assistant for developers,
especially novice developers, to discover silent bugs in their
code in the early development stage. Our evaluations on
213 testing snippets show that the PYSIASSIST can correctly
detect silent bugs with 92.4% precision and 85.3% recall.
Furthermore, we also extend PYSIASSIST to support the
detection of more bug patterns, demonstrating its extensibility.
In contrast, CodeGuru [7, 21], a general PyTorch bug detector,
only achieves 1.5% recall, whereas ChatGPT only achieves
76.1% precision and 51.9% recall (relying only on ChatGPT
results in relatively low accuracy).

The contributions of this work are summarized as follows:

• We present the first comprehensive study of silent bugs in
PyTorch programs. Our study reveals a set of key findings
and implications on the symptoms, root causes, and bug
patterns of silent bugs.

• We design and implement PYSIASSIST, a static assistant
that help developer handle silent bugs in PyTorch programs.
Evaluation results show that PYSIASSIST achieves 92.4%
precision and 85.3% recall.
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Fig. 1. Dataset construction workflow

• We create a dataset of silent bugs, including 365 posts of
silent bugs. The dataset and implemented tool are open-
source and available to benefit the research community[22].

II. DATASET CONSTRUCTION

To understand and recognize silent bugs in PyTorch pro-
grams, we first collect a set of posts and discussions from
PyTorch forum [20]. The goal is to identify the silent bugs
frequently encountered by developers and their corresponding
fix strategies. The construction of the entire dataset falls
into three processes: data collection, data filtering, and data
annotation. An overview of the entire construction process is
presented in Figure 1.

A. Data Collection

Information regarding silent bugs was gathered from the
official PyTorch forum, a well-known Q&A website, where
developers from around the world can discuss problems related
to PyTorch. Due to the large number of posts in the official
PyTorch forum, and new posts are continually added every
day, it is impractical to collect all the posts from the forum.
Hence, we select a set of representative posts based on their
popularity and keywords.

Data collection based on popularity: PyTorch forum
provides a ranking of the posts based on popularity, measured
by the number of “viewed” counts, representing the most
common problems encountered by developers. As we need
to understand how a silent bug is fixed, we only select the
posts with tag “solved”. The solved post usually includes
discussions about bug symptoms, bug patterns, root causes,
and their analysis, which can help us understand a bug. Based
on the ranking of the forum, we obtained 13,241 most popular
posts (the largest number of posts allowed by the forum).

Data collection based on keywords: Although posts based
on popularity have a certain level of representativeness, there
is still a possibility that some posts related to silent bugs are
not included in these 13,241 posts. We want to collect as many
of these excluded silent bug posts as possible to improve the
representativeness of the dataset. We used the method of data
collection based on keywords to collect as many posts related
to silent bugs as possible. To achieve this goal, we first choose
posts that have been marked as “solved” in their tags and then
search for the keyword “silent bugs”. However, this approach
yields only one post. This is mainly because developers pay
more attention to the bug itself instead of the bug properties
(i.e., “silent”). According to the definition, silent bugs do not



result in error messages, system crashes, or hangs. Hence, they
could cause a wide range of problems (e.g., erroneous output,
low accuracy, and high loss). Referring to the method used by
Zhang et al [6] for constructing keywords, we obtained five
keywords: ‘performance’, ‘accuracy’, ‘learning rate’, ‘loss’,
and ‘slower’. With those keywords, we obtained 1,922 posts.
After merging and de-duplicating the posts collected by pop-
ularity and keywords, we finally have 14,523 posts.

Beyond understanding the silent bugs, we also aim to build
a tool PYSIASSIST to help developer resolve silent bugs. To
evaluate the performance of the tool, we randomly shuffle
and equally divide the 14,253 posts into a training set and a
testing set. We equally divide the dataset because we hope
both training and testing sets adequately represent the overall
distribution of the silent bugs. The training set will be used to
build the general tool, while the testing set is used to validate
its effectiveness.

B. Data Filtering

To ensure that the constructed dataset meets our objectives,
we filter the dataset based on the following criteria:
• As our research targets silent bugs, the initial questions and

code in the selected posts must not contain error message.
• The question in selected posts should encompass either

source code or clear bug description, which helps us identify
and analyze silent bugs accurately and efficiently.

• The answers in the selected posts should unambiguously
provide the precise location and the cause of the silent bug.

Though manual filtering could be accurate, it may take
unaffordable time given the large number of posts. Recently,
LLMs like ChatGPT have been proven to have good text
understanding capabilities, thus, ChatGPT is used to filter out
obviously irrelevant posts. BingChat is built on top of the
GPT4 model, and we rely on BingChat mainly because it
can retrieve post content online. Then, we manually review
the remaining ones to precisely select the posts we need. The
data filtering process consists of the following three steps:

Step 1: Feasibility checking: As prior study showed
promising results in using LLMs like ChatGPT for text com-
prehension and web content filtering [23], we present the first
feasibility study of using LLMs for filtering forum posts in the
context of conducting our empirical study. Specifically, we first
randomly select a certain number of posts, manually annotate
these posts, provide the URLs of these posts to BingChat, and
then check the classification accuracy of BingChat. We choose
200 posts from the original data, annotate them as silent bugs
or not, and develop and refine several candidate prompts.
To avoid subjective factors, we adopted a method similar
to Yang et al. [24]. Specifically, we manually created a few
prompts and then let the LLM optimize them to produce a set
of candidate prompts. Subsequently, we derive the following
prompt that achieves the best result: url + I want you to act as
a URL checker for a question-and-answer post. I have given
you the URL of the post and you should check if the initial
question in that post has no error message and if it has a clear

problem description or includes source code. Does this post
meet the criteria? Please provide a reason using the format
shown below: ‘Yes (or No), the reason is that the post . . . ’,
and do not wrap!. We manually analyze the results for the 200
posts and calculate the percentage of correctly classified posts.
With the above prompt, BingChat achieves 74.4% accuracy.

Step 2: Preliminary filtering through BingChat: After
the feasibility checking, we use BingChat with the best prompt
to classify these 14,523 posts twice. This is to avoid the
randomness of the output from BingChat as a large model
itself and obtain results as accurately as possible. If the
filtering results are ‘yes’ (meaning it is a silent bug) for both
times, the corresponding post will be retained.

However, some of these posts are still unusable due to errors
made by BingChat in its judgment, since defining a clear and
concise problem description is a challenging task, even for
humans. It is unrealistic to expect BingChat to classify every
post correctly, and this motivates us to manually review the
remaining posts.

Step 3: Manual data filtering: After BingChat filtering,
around 14% of the posts remain relevant to silent bugs. Then,
two authors manually analyzed all the remaining training and
testing posts independently by reading the description and
filtering them based on their joint agreement. To minimize the
impact of subjective factors on the dataset quality, we con-
servatively removed ambiguous posts in the filtering process
(i.e., if the description is unclear or two author can’t reach a
consensus whether it is a silent bug, we simply removed the
posts). Finally, we collected 365 posts, including 197 posts
from training set and 168 posts from testing set.

It is important to note that, during the data collection stage,
we gathered as many popular posts as possible, and in the data
filtering stage, we made efforts to minimize subjective factors.
Therefore, we believe that these 365 posts can to some extent
represent the general situation.

C. Data Annotation

To understand silent bugs, we manually annotated the
dataset. The training and testing sets were annotated by the
first two authors of this paper. Both authors have more than
two years of experience of using PyTorch. Among them,
Annotator A, who is responsible for annotating the training set,
is also the developer of PYSIASSIST. The dataset is annotated
from the following dimensions:
• Symptoms. refer to the abnormal phenomena mentioned

in the posts, including too low accuracy (acc), loss not
decreasing, or turning into NaN, etc.

• Root cause. refers to the causes of these abnormalities
mentioned in the posts, such as the erroneous selection of
loss functions, etc. It also involves the stages where the
error occurs, including data preprocessing, data input, model
training, evaluation, or GPU(s) configuration.

• Buggy code patterns. refers to the patterns of buggy code,
for instance, API parameter errors, API usage errors, miss-
ing APIs, etc. PYSIASSIST will be built based on these
abstracted buggy code patterns.
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Fig. 2. Taxonomy of silent bugs symptoms

All the dimensions are used to annotate both training and
testing set. The annotators meticulously review all aspects of
the posts, which include the title, the question description,
comments, answers, and any reference links mentioned during
the discussion, to label silent bugs.

As the training and testing sets are annotated by two
authors independently, we evaluate the reliability of our an-
notation process to prevent any potential bias. Among these
dimensions, Symptoms are typically clearly described by the
questioners, making it unlikely to introduce bias. Similarly,
given the root cause, bug patterns can also be easily annotated.
Hence, the most critical dimension in the entire dataset is
the Root cause. To validate the reliability of root cause
annotation, two annotators switched roles and re-annotated
the root cause. Compared to the original annotation results,
the new annotation results showed no significant difference,
indicating that the annotation has a certain degree of reliability.
Note that this process was carried out after the construction
of the PYSIASSIST and the extraction of testing code snippets
from the testing set posts to avoid any bias in the processes
of building and evaluating PYSIASSIST.

III. EMPIRICAL RESULTS

We start by analyzing the symptoms and root causes of
silent bugs within the dataset and then summarize patterns of
silent bugs. It should be emphasized that these results are the
aggregated analysis of the training and testing set.

A. Symptoms Analysis

Figure 2 shows the taxonomy of silent bug symptoms, which
is composed of three primary categories: Output, Processor,
and Time, which are further divided into seven subcategories.
325 instances (representing 89.0% of all cases) of the total
365 silent-bug posts belong to these three categories. The
remaining 40 posts (11.0%) belong to the Others category.

1) Output. This category contains silent bug posts with
issues in output results, accounting for 295 (80.9%) of the
silent-bug posts. The Abnormal Convergence Process sub-
category contains 116 posts (31.8%) that exhibit abnormal
convergence in evaluation metrics such as accuracy (ACC)
and loss. Such abnormal behaviors include sudden decreases
in ACC, unchanging loss, continuously increasing loss, and
etc. Subcategory Abnormal Evaluation Metrics Value includes
82 posts (22.5%), exhibiting abnormal values accuracy (ACC)
and loss. Compared to the Abnormal Convergence, Abnormal
Evaluation Metrics Value emphasizes the presence of extreme

values, e.g. excessively large or small values. For example,
ACC remains to be 0, or the value of loss is set as NaN.
Moreover, 59 posts (16.2%) exhibit Abnormal Output Results,
such as consistently predicting only a specific category during
validation, and 38 posts (10.4%) exhibit Abnormal Interme-
diate Results. For example, during training, a bug may cause
the gradient of a certain layer to remain unchanged.

2) Time. Silent bugs in this category, accounting for 23
posts (6.4%), cause abnormal execution time. Slow Execution
Time (20 posts) refers to the increase of execution time
including training time, inference time, forward propagation
time, backward propagation time, etc. Three posts (accounting
for 0.9%) belong to Ineffective Acceleration Operation. For
example, when setting Num_workers > 0 to utilize multiple
GPUs, but the execution time is unexpectedly increased.

3) Processor. This category only contains 6 posts (1.7%),
with the subclass Abnormal GPU Utilization caused by low
GPU utilization, GPU not used, inability to use multiple GPUs,
etc. Among them, low GPU utilization refers to the situation
where the GPU is underutilized during training or inference
processes, e.g., the GPU utilization is less than 10%. GPU
not used means that GPU utilization is 0%, indicating that
it is not being utilized at all. Inability to use multiple GPUs
indicates that only one or a few GPUs are used although there
are multiple GPUs available.

Summary. More than 80% of silent bugs in DL programs
result in abnormal outputs. Around 6.4% of silent bugs cause
program slowdown, while 1.7% of them lead to abnormal GPU
utilization. The diverse symptoms exhibited by silent bugs
make it challenging for developers to determine whether these
anomalies arise from code bugs, poor data quality, errors in the
DL framework, or other factors. Hence, understanding the root
causes of the silent bugs is important for debugging. Moreover,
different from traditional programs where the developers can
use assertions to check for the program’s outputs, it is hard
to write unit tests to validate the outputs of functions in
DL programs. As most silent bugs lead to abnormal outputs,
developers or future researchers may consider designing test
oracles that check for our identified types of abnormal outputs
using a differential testing approach (e.g., comparing the
values of loss before and after calling certain APIs).

B. Root Cause Analysis

Figure 3 shows the taxonomy of root causes for silent bugs,
including four high-level categories and 16 subcategories.

1) Training and Execution. This category encompasses
silent bugs related to the model training and execution pro-
cesses, representing the root causes of the highest num-
ber (196, 53.7%) of silent bugs. In this category, disrupt-
ing dynamic computational graph during training results in
47 (12.8%) silent bugs. Different from TensorFlow’s static
computational graph mechanism, PyTorch utilizes a dynamic
computational graph mechanism. In each step, the dynamic
mechanism first computes the values of preceding nodes.
Based on these values, it then builds the computational graph
for subsequent steps. Compared to the static mechanism, the
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Fig. 3. Root causes of silent bugs in PyTorch

1 ## from: "loss-backward-does-not-update/129991"
2 logits.requires_grad = True
3 labels.requires_grad = True
4 - loss = Variable(loss, requires_grad = True)
5 ...
6 optimizer.zero_grad()
7 loss.backward()

Fig. 4. Disruption of computational graph

1 ## from: "simplest-lstm-possible-and-it-does-not-work
/29507"

2 for j in range(1000):
3 + optimizer.zero_grad()
4 hidden = (...,torch.zeros((1,1,10),dtype=torch.double))
5 ...
6 loss.backward()
7 optimizer.step()

Fig. 5. Missing or misplaced training operations

dynamic mechanism is more flexible, but it relies more heavily
on the results of previous steps and requires more frequent
graph constructions. Consequently, developers is more likely
to disrupt the computational graph due to errors during training
and execution. In this subcategory, the two most representative
erroneous operations are using APIs such as detach() to
detach tensors directly and destroy the computation result, and
calling APIs (e.g., Variable()) to create tensors without
adding the newly created tensors to the computation graph.
Figure 4 shows an example where a new variable loss
(the same name as an existing variable) is created using
Variable() at line 4. However, the new loss is not
added to the computational graph, leading to the destruction
of the computational graph, resulting in the loss remaining un-
changed. Fixing this bug involves deleting the Variable()
at line 4, and continuing to use the original loss.

Missed or Misplaced Training Operations is another main
root cause of silent bugs, encompassing 56 bugs (15.4%).
This is mainly because developers may not be familiar
with the results of each computational operation in the
calculation process. Among them, the most common mis-
take is missing or misplacing one of the three operations:
optimizer.zero_grad(), optimizer.step(), and
loss.backward(). Figure 5 shows an example where de-
velopers forgot to call optimizer.zero_grad(), which
can reset the gradients to zero to prevent accumulating values

Add prefix https://discuss.pytorch.org/t/ to the post source to get the URL
of the post. The same applies to the following examples.

1 ##from "training-acc-going-up-test-acc-doesnt-change/43349"
2 + model.eval()
3 with torch.no_grad(): # switch to evaluation mode
4 images, labels = data
5 ...

Fig. 6. Flawed model evaluation operation
from previous epochs. Missing optimizer.zero_grad()
would cause Abnormal Output Results.

The lack of familiarity with the correct usages of loss and
activation functions, together with their interrelationship, leads
to Incorrect Loss Function or Activation Function utilization,
causing 62 silent bugs (16.9%). In this subcategory, developers
typically make two types of mistakes: 1) using inappropriate
combinations of loss functions and activation functions, e.g.,
pairing sigmoid() with NLLLoss() (in fact, NLLLoss
is typically used with log_softmax; 2) adding redundant
activation function before loss function, e.g., adding softmax
before CrossEntropyLoss() but an embedded activation
function is already included in CrossEntropyLoss().

During the model evaluation process, it is necessary to
consider freezing certain parameters. Lacking a clear under-
standing of these operations leads to 27 silent bugs (7.5%).
Figure 6 shows one representative example of a flawed model
evaluation operation where the developer switches to evalua-
tion mode using with no_grad(), but did not invoke the
model.eval() API. This oversight can lead to unexpected
updates of batch normalization (bn) layer. Conversely, using
model.eval() without with no_grad() can result in
unnecessary gradient computations during evaluation, poten-
tially interfering with the model’s performance and consuming
extra memory resources. Similarly, some developers did not
clarify which parameters to include in the optimizer or how
to customize the optimizer to manipulate these parameters,
resulting in 4 silent bugs (1.1%).

2) Model. There are 24.7% (90 posts) of bugs associated
with DL models. Among them, 40 silent bugs (11.0%) are
caused by Improper Hyperparameter. Hyperparameter is de-
fined as numerical parameters that users need to specify before
training, such as learning rate and momentum. To maintain
clear classification, configurations relying on non-numerical
values, e.g., loss function and optimizer selection, are not
included in this category. In this subcategory, the most typical
mistake is setting the learning rate to be too large or too small.

Improper usage of initialization methods may lead to Ab-



1 ## from "large-performance-gap-between-pytorch-and-keras-
for-imdb-sentiment-analysis-model/135659"

2 def __init__(self, vocab_size, em_dim, output_dim,...):
3 self.embedding = nn.Embedding(vocab_size, ...)
4 self.fc = nn.Linear(em_dim * maxlen, output_dim)
5 + nn.init.uniform_(self.embedding.weight, -0.05, 0.05)
6 + nn.init.xavier_uniform_(self.fc.weight, 1.0)
7 ...

Fig. 7. Abnormal model parameter initialization

normal Model Parameter Initialization, causing 27 silent bugs
(7.4%). Figure 7 shows an example where a developer tries
to compare the performance between Keras and PyTorch by
migrating a Keras model to PyTorch, but encounters lower ac-
curacy. This is mainly because the default parameter in Keras
is Normal(0,0.05), whereas PyTorch uses a different
default value Normal(0,1). Fixing this bug requires to add
initialization for the parameters in lines 5-6. Incorrect model
structures (e.g., overlapping activation layers or missing fully
connected layers) are classified in subcategory Incorrect Model
Structure, which contains 18 silent bugs (4.9%). Incorrect
Model Storage Method (1.4%) leads to errors during the
executing or fine-tuning of pre-trained models.

3) Data. We defined Data as the input data of the model or
loss function. Flawed data processing causes 59 (16.2%) silent
bugs, including four subcategories: Improper or Missing Data
Preprocessing, Improper Dataset Retrieval Method, Defective
Dataset and Incorrect Data Dimension Operation.

Improper or Missing Data Preprocessing involves 23 silent
bugs (6.3%). For example, a novice developer encountered
the “abnormal convergence process” symptom (the loss is not
decreasing) due to improper data preprocessing [25]. This
silent bug can be resolved by adding proper data processing
operations. Before the data preprocessing, Improper Dataset
Retrieval and Defective Dataset are two other reasons that may
cause silent bugs, causing 10 and 6 silent bugs, respectively.
For example, a developer forgot to shuffle the dataset [26],
which is classified as improper data retrieval, resulting in
low accuracy (ACC). Typical examples for defective dataset
involve imbalanced dataset and the failure to use WeightedRan-
domSampler(). The term Data in the above three subcategories
primarily pertains to model’s inputs. Subcategory Incorrect
Data Dimension Operation involves both the input data of the
model and loss function. This subcategory includes 20 silent
bugs that resulted from feeding data with wrong dimensions
into model or loss function.

4) GPU Usage. 20 silent bugs (5.4%) are resulted from
improper GPU usage. When using multiple CUDA GPUs,
Incorrect State Sharing result in inconsistent GPU state infor-
mation for different tasks or threads, causing 11 silent bugs.
For example, after using .cuda(), if .synchronize()
is not used, it will lead to Slow Execution Time. Similarly,
when using a specific GPU or multiple GPUs simultaneously,
developers’ unfamiliarity with GPU management can result in
Inefficient GPU Utilization Strategy, which resulted in 7 silent
bugs. For example, on a GPU supporting cudnn, not setting
torch.backends.cudnn.benchmark=True can cause
Slow Execution Time [27]. Moreover, Redundant Inter-device

Fig. 8. The categories of bug patterns

Data Transfer between CPU and GPU causes 2 silent bugs.
Summary. Our study shows that more than half of the silent

bugs are introduced by the category Training and Execution,
around one-fourth of them are introduced by the category
Model, approximately one-sixth of them are introduced by the
category Data, and the remaining ones are caused by GPU
Usage. The root causes of silent bugs are diverse and complex,
and there is no simple one-to-one correspondence between the
16 types of root causes and the eight symptoms. Moreover,
silent bugs do not generate error messages, and anomalies
in a model may not be attributed to the code itself. Hence,
developers may face challenges in identifying the existence
and the scope of bugs in the code. In this case, our study of
common root causes of silent bugs in PyTorch programs serves
as a guideline for developers to help them better understand,
debug, and fix these bugs.

C. Bug Patterns

With the analysis of the dataset, we discovered that there
are many similar code segments that led to silent bugs. To
automatically detect silent bugs, we identified 12 common
patterns in the training set. Using the same approach, we
identified 14 common patterns in the testing set, with 12
of them overlapping with the patterns from the training set.
The number of posts corresponding to these patterns is 181,
accounting for 49.6% of the total number of posts in the
dataset. The remaining ones do not exhibit common features,
e.g., improper learning rate does not have common patterns.
We further classify these 14 patterns into five categories: Re-
dundant Operation, Missing Operation, Misplaced Operation,
Erroneous Operation, Incorrect Operation Parameter. In this
context, operation refers to code actions (e.g., assignment,
computation, function calls).

Redundant Operation refers to implementing the
same functionality multiple times. For example, function
CrossEntropyLoss() has already included an activation
operation, hence when using CrossEntropyLoss, another
activation function, e.g., softmax(), is not needed. Using
softmax() and CrossEntropyLoss() together will be
classified as redundant operation.

Erroneous Operation refers to situations where certain op-
erations are incorrectly used in a specific context. For instance,
in post [28], tensor dimensions should be transformed using
permute(), but view() was mistakenly used.



Missing Operation refers to the situation where a specific
operation is expected in the code context but is actually
missing. The code shown in Figure 5 belongs to this category.
In the code for model evaluation, with no_grad() that
prevents the update of batch normalization layers is missing.

Misplaced Operation refers to the situation where the order
of two or more operations is wrong. For example [29], the
invocation of zero_grad() should be ahead of backward
propagation. Misplacing zero_grad() after backward()
will result in a higher loss than actual values to be predicted.

Incorrect Operation Parameter refers to the situation where
the operation is correct, but some parameters are incorrect.
For instance, when loading and splitting training/testing set,
argument shuffle should be set as True instead of False.

We further measure the distribution of the bug patterns
within the entire dataset (shown in Figure 8). We observe that
Missing Operation is the most common pattern, accounting for
42.9%. Erroneous Operation and Incorrect Operation param-
eter come next, accounting for 28.6% and 14.3% respectively.
Misplaced Operation and Redundant Operation are the least
frequent with each of them accounting for only 7.1%. Overall,
our study shows that developers are more likely to introduce
silent bugs due to forgetting certain operations or being
unfamiliar with certain operations. Redundant operations and
misplaced positions are unlikely to cause silent bugs.

IV. DESIGN AND IMPLEMENTATION

Based on the results of our study, we design and implement
PYSIASSIST, an assistant tool for helping developer resolve
PyTorch Silent bugs. To prevent overfitting, we only use the
training set for our design of PYSIASSIST.

A. Overall Design

We follow the design of CodeQL [30] and Joern [31]
that detects bugs by first representing program as graphs and
the quering the graphs to check against pre-defined patterns.
Figure 9 shows the workflow of PYSIASSIST with three key
modules: (1) Configuration, (2) Graph Generation, and (3)
Bug Detection. The Configuration module allows users to
specify bug patterns by providing configuration files. The
Graph Generation module parses the code under test into graph
representations, including Control Flow Graphs (CFG) and
Data Flow Graphs (DFG). The Bug Detection module queries
the constructed graphs to check against the patterns defined in
the configuration files.

Configuration. The goal of the configuration module is
to provide an interface for users to specify bug patterns
and extend PYSIASSIST easily. There are several reasons to
support such an extension:
1) According to empirical results, 12 patterns only cover
49.6% of the posts, while the remaining 50.4% bugs follow
different patterns.
2) As the most popular DL framework, PyTorch is rapidly
evolving, indicating that patterns may require frequent update.
3) Our dataset is based on posts from the PyTorch forum,
which is representative but may not cover all cases.
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Fig. 9. An Overview of PYSIASSIST

With the extensible framework, supporting new patterns
only requires the addition of corresponding configuration files,
and there is no need to modify or rebuild the tool itself.
With the configuration files provided by users, PYSIASSIST
could automatically translate them into formal patterns. Then,
PYSIASSIST will be able to recognize corresponding types of
bugs based on the respective formal patterns.

Graph generation. The code under test is first parsed into
CFG and DFG, which will facilitate the subsequent detection
of PYSIASSIST based on these graphs. We choose to convert
the code into CFG and DFG because : (1) control flow graph
(CFG) represents all paths that might be traversed by a pro-
gram during its execution [32], and (2) data flow graph (DFG)
represents data dependencies between several operations [33].
As PyTorch is based on dynamic computational graphs, it
may encounter silent bugs during the execution process of
rebuilding the computational graph. Utilizing CFG and DFG
can better simulate the program execution, thereby making
PYSIASSIST more accurate in detecting silent bugs.

Bug detection. The detection module searches for paths in
the CFG within the specified range based on the configuration,
and then checks whether the sequence of operations along
a certain path matches any bug patterns. In PYSIASSIST, a
detection task is decomposed into a set of sub-tasks where
each of them is simple and standalone. For example, detecting
the bug in Figure 6 can be decomposed into two sub-tasks:
(1) detecting whether eval() is invoked before no grad() to
avoid BN layer configuration errors, and (2) detecting if there
is a no grad() after the eval() to prevent an unwarranted
deletion of computational resources. The combination of sub-
tasks enables the detection of more complex patterns. Note that
PYSIASSIST can be used to analyze both partial and complete
PyTorch programs.

B. Implementation

The implementation details of three modules are as follows:
Configuration. PYSIASSIST stores configuration information
in JSON files. The configuration parameters include graph
to explore (CFG, DFG, or both), detection scope (upstream
context, downstream context, or the entire document), detec-
tion start/end flag, and etc. Currently, PYSIASSIST includes
configurations corresponding to the 12 patterns.



Graph Generation. We utilize Scalpel [34], a Python static
analysis tool, to generate CFG and DFG. CFG supports the
control dependency analysis and build control flows. DFG
supports data dependency analysis in the upstream and down-
stream contexts. Users can choose to use DFG, CFG, or both.
Bug Detection. The detection module recognizes silent bugs
by traversing the constructed graphs and check against the
patterns defined in the configuration file. PYSIASSIST will
inform developer when the given PyTorch code satisfies a bug
pattern. Although PYSIASSIST is designed for silent bugs, but
it can also be generalized to other kinds of bugs.

V. EVALUATION

To assess the effectiveness of PYSIASSIST in helping devel-
oper recognize silent bugs, we answer the following research
questions.
• RQ1: What is the effectiveness of PYSIASSIST in recog-

nizing silent bugs in users’ programs?
• RQ2: How does PYSIASSIST compare with state-of-the-art

tools for detecting PyTorch bugs?

A. RQ1: Effectiveness of PYSIASSIST

Experimental Setup and Dataset. We design PYSIASSIST
based on the training set, and evaluate it on the testing set.
In the testing set, the author responsible for annotating the
testing set discovered 14 patterns, while 12 of them overlap
with the patterns from the training set. Table I presents the
categories of the overlapped patterns between the training and
testing dataset. As PYSIASSIST cannot detect bugs beyond the
implemented patterns, we only focus on posts that corresponds
to the 12 overlapped patterns from the testing set. To evaluate
the precision and recall of PYSIASSIST, we extract code
snippets from each post p and label them as follows:
1) Due to the code in the post being code snippets rather than

executable code, we are unable to verify whether the code
in the question and answer contains other minor issues.
When labeling the positive and negative samples for the
code, we only focus on the original question in the post.

2) If the original question in p contains a code snippet c, it is
assumed that c has corresponding silent bugs that need to
be detected, then c is considered a positive sample.

3) If an accepted answer from the respondent in p contains a
code snippet ca (usually patched code), ca is regarded as
a negative sample, assuming ca does not have silent bugs.

4) If the accepted answer from the respondent in p does not
have any code snippet but provides clear fix suggestions,
and the person asking the question has modified the cor-
responding source code accordingly, the fixed code cf is
regarded as a negative sample.

Note that, even the accepted answer’s code could potentially
contain minor errors. To ensure the accepted answers correctly
fixed the bugs, we also conduct manual reassessments of the
samples. Eventually, we obtain 192 segments of testing code
snippets, including 129 positive and 63 negative code snippets.

Results. Table I presents the evaluation results. PYSIAS-
SIST achieves 92.4% precision and 85.3% recall on these

TABLE I
PRECISION AND RECALL OF PYSIASSIST IN RECOGNIZING SILENT BUGS

IN USER PROGRAMS

Category missing misplace wrong-para errornance redundant Total
#pattern 5 1 1 4 1 12
Precision 86.7% 85.7% 100% 100% 94.4% 92.4%
Recall 89.7% 85.7% 66.7% 88.6% 77.3% 85.3%

192 samples. The lowest precision of PYSIASSIST is 85.7%,
however, as a static analysis tool, PYSIASSIST may produce
false positives (e.g., when detecting a pattern that requires run-
time information). Among these pattern categories, the lowest
recall is found in the “wrong-para” category, with a recall of
66.7%. This is because many PyTorch users tend to design
different parameters based on their specific circumstances.
To improve accuracy in error reporting, we only check the
necessary parameters during the design process, resulting in a
decrease in recall. For all other pattern categories, PYSIASSIST
achieves >75% recall. Nevertheless, as we design the detection
logic of PYSIASSIST based on real-world scenarios where
users encountered silent bugs, the overall precision and recall
of PYSIASSIST is relatively high. As an assistant tool that
provides development or debugging suggestions to developers,
we believe high precision is more important than high recall,
as producing too many false positives may introduce noises for
developers and then make them to loss trust to the assistant
tool. Hence, when developing PYSIASSIST, we implement
restrictive bug patterns to reduce false positives. In future,
it is worthwhile to design more advanced program analysis
techniques to further improve the accuracy. The experimental
results, detailed pattern descriptions and corresponding confu-
sion matrix can be found in our open-source repository [22].

B. RQ2: Comparison with existing tools

Experimental Setup. We select two approaches as our
baseline: CodeGuru [7, 21] and ChatGPT. CodeGuru is a
static analysis tool that can detect bugs in Python code [35].
Recently, it has added the capability to detect issues in PyTorch
code [21]. To use CodeGuru, we install the CodeGuru binary
from the Amazon’s CodeGuru homepage, and run it based
on the User Guide [36]. Specifically, we use the Python
detector with the machine-learning tag that can detect PyTorch
bugs [7]. We choose ChatGPT because recent studies have
shown its bug detection capability [37, 38, 39]. We follow the
same steps shown in Section II-B to construct prompt. Here we
also adopted the method similar to Yang et al. [24] to design
and optimize prompts. After three rounds of prompt improve-
ments and optimizations, the final prompt that achieves the
best results is: “Please review the following PyTorch code
snippet and list any potential issues”. We evaluate all tools
using the same dataset as RQ1.

Results. Table II shows the comparison results. Although
ChatGPT can successfully discover silent bugs in PyTorch
programs, its precision and recall are relatively low. In compar-
ison, PYSIASSIST achieves higher precision (92.4% vs 76.1%)
and recall (85.3% vs 51.9%). Hence, we believe relying on
LLM to solve a specific task (i.e., data filtering) instead of



TABLE II
PRECISION AND RECALL OF PYSIASSIST, CODEGURU AND CHATGPT

Tool PYSIASSIST ChatGPT CodeGuru
Precision 92.4% 76.1% 100%
Recall 85.3% 51.9% 1.5%

the bug detection task, which requires more sophisticated
analysis, may be a better choice. Compared to CodeGuru
which is designed for detecting general PyTorch bugs instead
of silent bugs, PYSIASSIST also achieves much better results.
CodeGuru can only detect two silent bugs from our dataset,
achieving a recall of 1.5%. Although these two detected bugs
are correct (i.e., 100% precision), such a low recall is not
acceptable. Overall, PYSIASSIST has improved over 15% in
both recall rate and precision rate compared to ChatGPT, and
achieves much higher recall than CodeGuru.

VI. IMPLICATIONS AND DISCUSSION

We discuss implications and future directions below:
Tool support for PyTorch programs. Our study reveals the

common symptoms and the underlying causes of silent bugs
when running DL programs. As most symptoms of silent bugs
correspond to abnormal outputs (Section III-A), developers
and tool designers should consider designing more flexible test
oracles that automatically detect these abnormal outputs (e.g.,
in metrics such as accuracy or loss). Moreover, the taxonomy
derived from our study may help developers of PyTorch pro-
grams in understanding silent bugs in their code, debugging,
and fixing them. As Table 8 shows that “Missing operation” is
the most common pattern for silent bugs in PyTorch programs
(Section III-C), future research in automated repair of these
bugs can focus on synthesizing the missing operation for
fixing these bugs. To reduce manual efforts in detecting silent
bugs in PyTorch programs, we identified 14 common bug
patterns and designed PYSIASSIST for automated detection of
these patterns (Section IV). As PYSIASSIST does not require
executing the program (which may be challenging for testing
silent bugs), it takes the first step in designing practical
customized tools for detecting and debugging silent bugs in
PyTorch programs. The current implementation of PYSIAS-
SIST only relies on lightweight pattern-matching techniques
with CFG/DFG graphs for checking the bug patterns. Hence,
it is worthwhile to explore how to enhance the detection with
more sophisticated program analysis techniques to improve its
precision and recall. Nevertheless, we hope that PYSIASSIST
will inspire the future design of practical tools for testing,
debugging, and fixing PyTorch silent bugs.

Developing PyTorch programs. Our study provides useful
development suggestions for preventing silent bugs in PyTorch
programs. We observe that many of these silent bugs occur due
to the unfamiliarity of developers with the APIs in PyTorch.
To prevent silent bugs caused by Incorrect Loss Function
or Activation Function, developers should carefully read the
documentation of activation functions and loss functions to
familiarize themselves with (1) the usage of loss functions, (2)
the applicable scenarios for different loss functions and activa-

tion functions, and (3) common combinations of loss functions
and activation functions. To prevent silent bugs caused by
disruption of computation graph, developers should be aware
of operations that may disrupt dynamic computational graph
and avoid making incorrect modifications of the .data attribute.

Semi-automated data filtering via LLM. Empirical studies
that mine software repositories or forums usually involve
manually collecting and filtering a large amount of data. Due
to the large number of posts that fulfilled the given search
query, reading and manually filtering irrelevant posts are time-
consuming. Our study made one of the first attempts to use
LLMs to assist the filtering process in an empirical study. The
results indicated that while LLM may not accurately identify
all the desired posts, they can help researchers in excluding
obviously irrelevant posts, thereby reducing the time and effort
required for the study. In future, it is worthwhile to explore
whether LLMs can be used for semi-automatic or even fully
automatic data filtering for other software engineering tasks.

Extensible checker for detecting silent bugs. PYSIASSIST
has extensibility to facilitate the addition of new patterns.
Hence, we designed a simple experiment to verify its exten-
sibility. Specifically, we extend PYSIASSIST to support two
more bug patterns. These two new patterns are added by an
author that did not develop the tool, simulating an user that
want to extend PYSIASSIST. We just change the configuration
files when we extend PYSIASSIST. Then we collect 21 code
snippets to evaluate the extended PYSIASSIST. On these two
new patterns, PYSIASSIST achieves a detection accuracy of
95.2% . So we believe PYSIASSIST can be easily extended
to support more bug patterns. The reason we focus on the
extensibility of PYSIASSIST is that bugs in deep learning
programs, especially silent bugs, exhibit a wide range of
symptoms and root causes that do not necessarily have one-to-
one correspondences (Section III-B). This further increases the
time and effort researchers spent during the analysis phase. In
this case, our design aims to encourage researchers to focus
their limited time and energy on studying the symptoms in
posts, analyzing the causes, and defining new patterns without
having to worry about supporting each newly defined pattern
to validate it.

VII. THREATS TO VALIDITY

Construct validity We filter and annotate the dataset man-
ually, which may affect the reliability of our final results.
To alleviate this threat, three authors independently filter and
annotate the dataset. For verifiability, we make our dataset and
tool publicly available.

External vaildity. Our research investigates bugs in Py-
Torch programs. Compared to other DL frameworks (e.g.,
TensorFlow), PyTorch relies on dynamic computational graph.
Hence, it is unclear whether our empirical results can be
generalized to other DL frameworks. In future, we will analyze
different DL libraries and use the extensibility of PYSIASSIST
to empirically validate our analysis results.

Internal vaildity. We conducted our study based on PyTorch
forum posts. However, there are many forums, e.g., GitHub



TABLE III
DIFFERENCES WITH RELEVANT WORK

Study Scope Framework Data Source Tool?

Tambon
et al. [1]

Silent bug in
DL frameworks

Tensorflow &
Keras

1168 issues from
GitHub.

no

Zhang
et al. [6]

General DL
bug

Tensorflow 27,845 stackover-
flow posts & 82
GitHub commits

no

Islam
et al. [5]

General DL
bug

Caffe, Keras,
Tensorflow,
Theano
& PyTorch

2716 stackoverflow
posts and 500
Github commits

no

Cao et al.
[8]

DL Bugs re-
lated to per-
formance

Tensorflow &
Keras

18,730 stackover-
flow posts

yes(3
pat-
terns)

Ours Silent bug in
the programs

PyTorch 13,241 official Py-
Torch forum posts

yes(14
pat-
terns)

and Stack Overflow, that could be valuable sources of silent
bugs. It is unclear whether our analysis results can be gener-
alized to other forums. We plan to continue exploring these
silent bugs in future work.

VIII. RELATED WORK

We discuss the closely related work in understanding and
analyzing deep learning bugs and silent bugs. To clearly show
the differences, Table III presents the differences between
our study and the three most relevant works from four per-
spectives: related work, research object, corresponding DL
framework, and data source.

Silent bug study. Several studies have been conducted on
silent bugs [1, 40, 41, 42]. Among them, the most relevant
work to ours is the work by Tambon et al. [1], which also
studied silent bugs. The key difference as shown in Table III
is that they focused on silent bugs within the internal code of
DL framework (TensorFlow and Keras). Differently, we focus
on silent bugs in user program, which are mainly caused by
incorrect API usage of DL framework. Moreover, researchers
have also analyzed the silent bugs in traditional programs [40,
41, 42]. Specifically, Vahabzadeh et al. [40] focus on silent
bugs in test code, which may lead to problematic code passing
the tests. Xu et al. [41] analyzed silent bugs introduced by
compilers during the compilation process. Van Der Kouwe
et al. [42] evaluated the impact of silent bugs on systems via
fault injection and proposed automated technique for detecting
and assessing the injected bugs. These studies also reveal that
silent bugs are hard to detect and can cause adverse effects.

General DL bug study. With the continuous development
of DL technology, an increasing number of researchers have
begun to study DL bugs. Among them, some researchers have
conducted studies on general bugs in DL programs [4, 5, 6,
43, 44, 45, 46]. For instance, Zhang et al. [6] collected 175
TensorFlow program bugs from StackOverflow and GitHub
commits. They analyzed these errors from the two dimensions
of symptoms and root causes, and discussed the challenges
and strategies for detecting and locating these errors. Islam
et al. [5] expanded the scope of Zhang et al. [6]’s study,
analyzing 970 errors in DL Programs written in Caffe, Keras,
TensorFlow, Theano, or Torch from four dimensions: types,
root causes, impacts, and pipeline stages. Furthermore, the fix

patterns of these bugs were also studied in their follow-up
work [43]. Humbatova et al. [4] established a classification
of errors in deep learning systems through manual analysis of
375 DL bugs and interviews with 20 developers. Jia et al.
[45] further extended the research scope to the interior of
DL libraries, where they analyzed the symptoms, root causes,
and locations of 202 bugs within the TensorFlow framework.
Different from these studies, we focus on silent bugs, which
are much harder to detect and analyze.

Specific DL bug study. In addition to general bugs, many
researchers have also studied specific DL bugs [47, 48, 49,
50, 51]. Chen et al. [47] studied bugs caused by deploying
deep learning models to mobile devices. Zhang et al. [51]
summarized common bugs when training DL models and
developed a tool for their detection and repair. Vélez et al.
[10], Wan et al. [11] identified performance-related patterns
of API misuse in cloud AI services. Wu et al. [48] analyzed
bugs related to tensor shape errors in deep learning models and
developed corresponding detection and repair mechanisms.
Cao et al. [8] studied the bugs related to model performance
issues. Different from these studies, we are the first systematic
study of silent bugs in PyTorch programs.

DL bug detection. Moreover, advancements have been made
in the analysis and testing of DL programs. Lagouvardos
et al. [52] developed a static analysis tool to identify bugs in
tensor shape mismatches. Wardat et al. [53] proposed a new
automated tool localizing bugs in DL program based on dy-
namic analysis. Zhang et al. [54] conducted a comprehensive
review of research related to DL program testing. Although
these works may be able to detect some of the silent bugs,
PYSIASSIST is the first extensible tool that is specifically
designed for detecting silent bugs.

IX. CONCLUSION

In this paper, we conducted the first empirical study to
analyze the characteristics of silent bugs in PyTorch programs.
From 14,523 posts in the PyTorch forum, we selected 365
silent bug posts and analyzed and annotated them based
on symptoms, root causes, and buggy code patterns. In the
end, we obtained 8 symptom classifications, 16 root cause
classifications, and 14 patterns. Moreover, we developed an
extensible static checker, PYSIASSIST, which supports the
detection of existing silent bug patterns. The validation out-
comes affirmed that our tool attains a precision of 93.6% and
a recall rate of 84.8% for the existing silent bug patterns,
while it demonstrates an accuracy of 95.5% for the newly
introduced silent bug patterns. Although this work is done
for PyTorch programs, the methodology can be transferred to
the programs with other DL frameworks, which will be an
important direction for our future work.
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