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Abstract—Training deep neural network (DNN) models, which
has become an important task in today’s software development,
is often costly in terms of computational resources and time.
With the inspiration of software reuse, building DNN models
through reusing existing ones has gained increasing attention
recently. Prior approaches to DNN model reuse have two main
limitations: 1) reusing the entire model, while only a small part
of the model’s functionalities (labels) are required, would cause
much overhead (e.g., computational and time costs for inference),
and 2) model reuse would inherit the defects and weaknesses of
the reused model, and hence put the new system under threats of
security attack. To solve the above problem, we propose SEAM,
a tool that re-engineers a trained DNN model to improve its
reusability. Specifically, given a target problem and a trained
model, SEAM utilizes a gradient-based search method to search
for the model’s weights that are relevant to the target problem.
The re-engineered model that only retains the relevant weights
is then reused to solve the target problem. Evaluation results on
widely-used models show that the re-engineered models produced
by SEAM only contain 10.11% weights of the original models,
resulting 42.41% reduction in terms of inference time. For the
target problem, the re-engineered models even outperform the
original models in classification accuracy by 5.85%. Moreover,
reusing the re-engineered models inherits an average of 57%
fewer defects than reusing the entire model. We believe our
approach to reducing reuse overhead and defect inheritance is
one important step forward for practical model reuse.

Index Terms—model reuse, deep neural network, re-
engineering, DNN modularization

I. INTRODUCTION

Software reuse is the process of using existing software
artifacts that would be otherwise created from scratch [1]–[3],
which is widely deemed essential to improve software quality
and development productivity. Instances of software reuse
include the reuse of software libraries, components, APIs, etc.
As today’s software systems are increasingly incorporating
AI techniques (e.g., deep learning), training DNN models
has become an important task in the software development
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lifecycle. However, training DNN models is often known to be
very costly, especially for models with billions of parameters
and large datasets. To solve this problem, with the inspiration
of software reuse, the software engineering community is
paying more attention to DNN model reuse [4]–[10].

A trained model can be directly reused if it fits the target
problem domain. However, reusing entire trained models may
cause large overhead (e.g., inference time). Just like traditional
software libraries which implement a large number of func-
tions, a trained model may also have multiple functionalities
(e.g., classification for multiple categories). When reusing a
trained model, often only part of functionalities are required
to solve the target problem. For instance, Google Vision API
provides the service of multi-class classification with around
20,000 classes, but not all classes are necessary in practical
scenarios. Suppose that a developer needs to build a fire
alarm application [11] for determining whether a given image
indicates “fire”. Although only two classes (“fire” and “non-
fire”) are needed, if the developer directly invokes Google
Vision API, all the 20,000 classes will be involved, which
can incur much inference overhead caused by the unnecessary
weights/neurons in the underlying DNN model.

A model trained to solve a similar problem can also be
indirectly reused via transfer learning [12], [13]. Transfer
learning consists of taking relevant features learned on a
similar problem and optionally fine-tuning the trained model
using the dataset of the target problem. Although effective in
classification accuracy and training efficiency, reusing trained
models may inherit their defects [14]–[16]. It has been shown
that AI models are notoriously brittle to small perturbations on
input data [15], [17], which allows attackers to craft adversarial
examples for malicious attacks. When reusing a model, the
weakness of a trained model can be inherited, and hence
putting the system under the threats of adversarial attacks.

To address the weaknesses of existing model reuse methods,
one idea is to only reuse some parts of a trained model (e.g.,
by eliminating some weights or neurons) that are relevant
to the target problem, as the weaknesses correlate with the
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weights of a trained model [7], [18]. Identifying the relevant
weights/neurons can be achieved with the fundamental concept
of re-engineering in software engineering [19], [20], which
aims to improve software maintainability and reusability by
enhancing or altering existing software. Borrowing the idea of
software re-engineering, we propose model re-engineering for
DNN models, which searches for the target problem-related
weights with the guidance of target problem-related metrics
(e.g., classification accuracy) and removes irrelevant weights
from an original model (i.e., trained model), resulting in a re-
engineered model. When solving a certain problem through
direct or indirect reuse, the re-engineered model, which retains
only relevant weights to certain functionalities (e.g., a part of
classes in classification), is reused, hence reducing the reuse
overhead and mitigating the defect inheritance.

Existing work, including model modularization [8]–[10]
and model slicing [7], has preliminarily explored the idea
of reusing part of trained models based on neuron activation
and neuron coverage [14], [15]. For instance, relying on
neuron coverage, model slicing [7] first computes the relevance
between weights and the target problem, then deletes the irrel-
evant weights. Unfortunately, due to the lack of interpretability
of DNN models, the effectiveness of using neuron coverage
is still questionable [21], [22]. The neuron coverage-based
work [7]–[9] is not accurate enough in identifying relevant
weights and hence prefers to be conservative in removing
weights, i.e., only a small number of weights are removed
to avoid removing relevant weights. Therefore, the models
obtained with the existing approaches [7]–[9] will retain lots of
irrelevant weights or neurons, having the limitations of reuse
overhead and defect inheritance. CNNSplitter [10] introduces
the first search-based approach for modularizing CNNs. As
CNNSplitter achieves modularization by searching for relevant
convolution kernels with a genetic algorithm, this approach
cannot be applied directly to other neural networks, such as
the fully connected neural networks.

In this paper, we propose SEAM, a Search-based Model
re-engineering approach that can accurately identify rele-
vant weights and hence removes as many irrelevant weights
as possible. Different from the neuron coverage-based ap-
proaches [7]–[9], SEAM is directly guided by the target
problem-related metrics, e.g., classification accuracy, to search
for the relevant weights. Moreover, SEAM applies a gradient-
based search method to identify relevant weights, which is
more general and efficient than CNNSplitter [10]. Specifically,
SEAM consists of three components: search space, perfor-
mance estimation strategy, and search strategy. The search
space consists of the masks of all candidate re-engineered
models. The mask of a candidate records which weights
of the original model should be retained or removed. The
performance estimation strategy defines the objective function
of the search as the weighted sum of the candidate’s weight
retention rate and its cross-entropy loss on the target problem’s
dataset (denoted as target dataset). The objective function is
used to evaluate a candidate’s performance, and the objective
function value is sent to the search strategy to guide the

labels = client.label_detection(image=image).label_annotations
temp = labels[0].desc + labels[1].desc + labels[2].desc

if “fire” in temp:
alarm()

The trained model classifies an object into one of around 20,000 classes.

The requirement is to classify an object into 
“fire” or “non-fire”.

…
…

…
…

fire

cat

dog

Reusing trained model

…
…

Fig. 1. An example of direct model reuse.

next round of search. The search strategy applies a gradient-
based search method to explore the search space efficiently. In
each search round, the search strategy finds a candidate with
better performance by minimizing the objective function value.
SEAM performs the search and estimation processes itera-
tively, and stops when the objective function value converges.
The candidate with the minimal objective function value will
be regarded as the resultant re-engineered model. The re-
engineered model can be reused directly, or indirectly via fine-
tuning, which helps reduce reuse overhead and lower the risk
of defect inheritance while achieving comparable performance
(e.g., classification accuracy) to the original model.

We evaluate SEAM using four representative CNN mod-
els on eight widely-used datasets. The experimental results
first demonstrate that SEAM can accurately identify relevant
weights and thus remove a large number of irrelevant weights.
On average, a re-engineered model contains 89.89% fewer
weights than the original model, and outperforms the original
model by 5.85% in classification accuracy. Moreover, reusing
a re-engineered model incurs less reuse overhead than reusing
an original model, e.g., the average reduction in time cost for
inference is 42.41%. Regarding defect inheritance, reusing the
re-engineered model inherits an average of 57% fewer defects
than reusing the original model.

The main contributions of this work are as follows:

• We propose the notion of model re-engineering, which re-
engineers a trained deep learning model to improve its
reusability.

• We propose a search-based model re-engineering approach
named SEAM, which can accurately identify the weights
relevant to a target problem and hence allows the re-
engineered model to retain as few irrelevant weights as
possible. SEAM can reduce the reuse overhead and lower
the risk of defect inheritance in model reuse.

• We conduct extensive experiments using four representative
CNN models on eight widely-used datasets. The results
show that SEAM can remove a large number of irrelevant
weights from the original models. Also, the experiments
demonstrate the effectiveness of SEAM in overcoming the
limitations of existing approaches.
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II. MOTIVATING EXAMPLES

Reusing a re-engineered model containing fewer irrelevant
weights rather than an original model has several benefits.
In this section, we introduce the applications and benefits of
model re-engineering with two examples.

A. Reducing reuse overhead in direct reuse

When a trained model satisfies the requirement of a target
problem, a common way of reuse is to reuse the entire
trained model on the target problem directly. However, there
may be redundancy in the functionalities provided by the
trained model [8], [23]. Redundancy in a trained model’s
functionality implies redundant weights, which may incur
significant reuse overhead, including computational and time
costs for inference, that is unnecessary for the target problem.

As shown in Figure 1, a simple fire alarm application [11]
is used to illustrate the problem. In this example, the
developer reuses a trained model (by calling the Google
label_detection API) to classify an input image. An
alarm will be triggered if the top-3 classification labels re-
turned by the trained model include the keyword “fire”. The
requirement of the target problem is to classify an image into
“fire” or “non-fire”, while the reused trained model classifies
an image into one of around 20,000 classes. As different
weights could recognize features of different classes [24], [25],
only a few relevant weights recognize the features of “fire”.
However, when reusing the trained model for inference, a lot
of irrelevant weights are loaded into memory and involved in
computation to produce intermediate results, incurring mem-
ory, computational, and time costs.

The example demonstrates that the requirement of a target
problem may be only a small part of a trained model’s
functionality. Model re-engineering can remove part of the
original model’s weights irrelevant to the target problem and
allows developers to reuse only the relevant weights. In
this example, the weights irrelevant to the target problem
are removed, resulting in a re-engineered model that only
classifies “fire” and “non-fire”. Compared to directly reusing
the trained model, reusing the re-engineered model containing
fewer weights could reduce the reuse overhead.

B. Mitigating defect inheritance in transfer learning

When a trained model cannot satisfy the requirement of
a target problem, a common form of reuse is to transfer
learning [26]–[28]. That is, a developer reuses a trained model
and fine-tunes the trained model on the target dataset to build
a fine-tuned model that satisfies the requirement. This form
of reuse is widely-used and effective; however, it faces the
problem of defect inheritance [7], [16], [29], [30]. An example
shown in Figure 2 is used to illustrate the defect inheritance
and potential attacks to face. In this example, a public model
trained on ImageNet [31] can perform classification with 1000
classes (including 59 bird classes [32]). To build a model
for classifying birds with 200 classes, a developer reuses the
trained model and fine-tunes the trained model on the target
dataset Caltech-UCSD Birds [33]. During fine-tuning, most of

Fine-tune

Analyze vulnerability Pose threats

Attacker

Public Trained Model

...

ImageNet-1000
(59 bird classes)

...

Fine-tuned Model
...

Caltech-UCSD Birds
(200 bird classes)

Reuse
Developer

...

Fig. 2. Fine-tuning a publicly available trained model. Inherited defects could
be exploited by attackers.

the weights in the pre-trained model are retained in the fine-
tuned model. The adversarial examples that can fool the public
trained model are still likely to be able to fool the fine-tuned
model, which is called defect inheritance [7], [16], [29], [30].

The major reason for defect inheritance is indiscriminate
reuse [7], [18]. Specifically, in conventional transfer learning,
all the trained model’s weights are reused, including both the
relevant and the irrelevant ones to the target problem. As the
target dataset is usually not very large, fine-tuning will not
have much effect on changing the weights irrelevant to the
target problem. As a result, the defects are mostly inherited in
the fine-tuned model [7], [34].

Model re-engineering alters the original model by removing
irrelevant weights, thus avoiding the inheritance of defects
associated with these weights when the re-engineered model
is reused. In this example, a re-engineered model retains
only the weights relevant to the features of “bird”. As a
result, compared to reusing the original model, reusing the
re-engineered model can reduce the defect inheritance while
achieving comparable accuracy.

III. OUR APPROACH

In this section, we introduce SEAM, a search-based ap-
proach to model re-engineering, which uses a gradient-based
search method to find the target problem-related weights.

A. Overview

As illustrated in Figure 3, the workflow of SEAM consists
of three components: search space, performance estimation
strategy, and search strategy. Given an original model (a
3-class classification in Figure 3), which consists of three
neural network layers with fifteen weights, and a target dataset
(binary classification in Figure 3), the model re-engineering
process is summarized as follows:

(1) Construction of Search Space: A re-engineered model
selectively removes part of the original model’s weights ac-
cording to a mask. A mask is a bit vector [0, 1]L, where L
is the number of weights in the original model, and each bit
represents whether the corresponding weight is removed. In
total, there are 2L candidate masks, each of which corresponds
to a candidate re-engineered model. Consequently, the search
space consists of 2L candidates. The mask is initialized
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Performance Estimation Strasegy
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Dataset

cross-entropy lossweight retetion rate

CandidateOriginal model

mask & head

evaluate

Objective function

Fig. 3. The workflow of model re-engineering with SEAM.

with all element values as 1, representing that all weights
are retained initially. The first and second steps along with
the component Search Space in Figure 3 display the above
process, where L = 15 and the search space size is 215.

(2) Performance Estimation: Given a candidate mask, the
performance estimation strategy first constructs a candidate re-
engineered model by removing weights according to the mask
and appending a head as the output layer. The head, which
is a fully connected layer, is used to enable the candidate
to adapt to the target problem, i.e., adapt the original N-
classification model to the target K-classification problem.
Then, the objective function is defined as the weighted sum of
the weight retention rate of the candidate and the cross-entropy
loss between the candidate’s predictions and corresponding
actual labels on the target dataset. The objective function is
used to evaluate the performance of a candidate. The resulting
objective function value will be fed back to the searching pro-
cess to guide the next search round. The third step along with
the component Performance Estimation Strategy in Figure 3
display the estimation process.

(3) Searching Candidates: The search strategy applies a
gradient-based search method to explore the search space with
the guidance of the objective function. The gradient-based
search method not only efficiently explores the huge search
space, but also optimizes the head at the same time. In each
search round, the search strategy sends the updated mask
and head as a new candidate to the performance estimation
strategy. The fourth step along with the component Search
Strategy in Figure 3 display the search process, where the head
has two neurons as the target problem is binary classification.

SEAM iterates the search and estimation processes. When
the objective function value converges, SEAM outputs the re-
engineered model. In the example shown in Figure 3, the re-
engineered model retains 7 out of 15 weights of the original
model and performs binary classification. We present the
technical details of each step in the following.

B. Construction of Search Space

The goal of model re-engineering is to obtain a new model
which retains only the target problem-related weights of the
original model. Model re-engineering is formulated as a prob-
lem of searching for a new model from all candidate models,

Original Model

+mask +head

Re-engineered Model

mask6
-1
-1

8
4

-3

2
1
5

-1
-3
7

-2
9
2

6
-1
-1

8
4

-3

2
1
5

-1
-3
7

-2
9
2

1
1
0

0
0
1

1
0
0

0
0
1

0
1
1

head6
-1
0

0
0

-3

2
0
0
0

-3
7
0
0
2

Intermediate Model

Fig. 4. The construction of a re-engineered model using the mask and head.

which selectively removes part of the original model’s weights.
If the searched model retains only the target problem-related
weights, it is regarded as the re-engineered model. In this
problem, the search space consists of all possible candidate
re-engineered models. To facilitate a technical solution to this
problem in practice, a mask that records which weights are
removed and retained in a candidate is used to represent a
candidate, thereby omitting unnecessary details of a candidate,
such as Max-pooling and Dropout layers. Consequently, in
SEAM, the search space consists of all candidate masks.

Specifically, a mask is a bit vector [0, 1]L, where L is
the number of weights in the original model, and 0 (or 1)
represents the corresponding weight removed (or retained).
Figure 4 illustrates the use of a mask to remove weights from
the original model. By multiplying the weights of the trained
model with the mask, SEAM sets the values of irrelevant
weights to zero and keeps the values of relevant weights. The
weights with values set to zero are involved in the computation
but have no effect on the prediction, thus achieving the effect
of removing irrelevant weights. Note that, after model re-
engineering, the computation of a re-engineered model involv-
ing the weights with zero values could be eliminated by special
libraries (e.g., DeepSparse [35]), which will be discussed in
Section IV-B.

After the construction of search space, a mask initialized to
all element values of 1 is fed to the performance estimation
strategy. That is, the starting point of the search is a candidate
that retains all the original model’s weights.

C. Performance Estimation

The search aims to find the optimal mask, which corre-
sponds to a candidate re-engineered model that retains only
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the target problem-related weights and can classify well on
the target problem. To achieve the goal, the performance
estimation strategy defines the objective function of the search
as the weighted sum of weight retention rate and cross-entropy
loss. The weight retention rate can measure the number of
weights retained by the candidate. The cross-entropy loss on
the target dataset can measure the classification performance
of the candidate on the target problem.

Specifically, when evaluating a candidate’s performance,
SEAM first constructs the candidate, as the computation of
cross-entropy loss requires running the candidate on the target
dataset. Figure 4 illustrates the construction of a candidate re-
engineered model. SEAM first multiplies the weights of the
original model with the mask to remove part of the original
model’s weights, resulting in an intermediate model. As the
output layer has three neurons, the intermediate model is still
a model for 3-class classification. To adapt the candidate to
the number of classes of the target problem, the head, a fully
connected layer, is appended after the intermediate model
as the output layer of the candidate. The head is randomly
initialized in the first search round and will be updated along
with the mask in the subsequent rounds. In this example, the
head has two neurons, which transforms the 3-class prediction
of the intermediate model to the binary prediction, allowing
the candidate to adapt to the target problem.

After constructing the candidate, the cross-entropy loss Lce

between the candidate’s predictions on the target dataset and
the actual labels is computed as follows:

Lce = −
K∑
i=1

ti log(Pi(M,H)), (1)

where K is the number of classes in the target problem, M and
H are the mask and head, Pi(M,H) is the prediction for the i-
th class by a candidate constructed with M and H, and ti is the
probability of the i-th class in the one-hot representation of the
actual label, with a value of 0 or 1. A lower cross-entropy loss
indicates that the candidate retains more target problem-related
weights and hence achieves higher classification accuracy on
the target dataset.

The weight retention rate Lwr is computed directly from
the mask:

Lwr =
1

L

L∑
i=1

M[i], (2)

where L is the number of weights in the original model. A
lower weight retention rate indicates that the candidate retains
fewer weights. Based on Lce and Lwr, the objective function
O is defined as follows:

O = Lce + α× Lwr, (3)

where α is a weighting factor and is empirically set to 1.0. To
minimize O, SEAM tends to search for a candidate that retains
only the target problem-related weights, as this candidate can
achieve the highest classification accuracy while retaining as
few weights as possible.

D. Searching Candidates

Large models can have billions of parameters, resulting in
super huge search space. To explore the huge search space
efficiently, our search strategy applies a gradient-based search
method. In each search round, the search strategy finds a
new candidate with a smaller objective function value by
gradient descent based on the objective function value of the
candidate in the previous round. That is, the mask is updated
by descending the gradient as follows:

M
′
= M− ξ ×∇M,HO, (4)

∇M,HO = ∇M,HLce + α×∇MLwr, (5)

where ξ is the learning rate, and M′
is the updated mask

corresponding to a new candidate with a smaller objective
function value.

When applying gradient descent to update a mask, it is im-
portant to note that gradient descent requires the search space
to be continuous and differentiable [36], while the search space
composed of masks is discrete and non-differentiable. Inspired
by DARTS [36], the search strategy attaches a continuous
number to each element of the mask, which can be considered
as the relevance of the weight to the target problem. Then
an indicator function 1(0,+∞):X→{0, 1} is used to set the
element values corresponding to the weights with relevance
greater than zero to 1 and the other element values to 0. As
the relevance is continuous, the search strategy uses gradient
descent to update the relevance and thus can update the mask.

After satisfying the condition that the search space is
continuous, another problem is that the indicator function is
non-differentiable at x=0, and the derivative of the indicator
function equals 0 everywhere except at x=0. This problem
prevents the common backward propagation based on gradient
descent from directly applying to update relevance [37], [38].
To address the problem, the technique named straight-through
estimator [38], [39] is used to estimate the gradient of the
indicator function, which directly uses the gradient of the
previous neural network layer as the gradient of the current
neural network layer.

The head is updated along with the mask by descending
the gradient ∇M,HLce. After updating the mask and head,
the search strategy sends them as a new candidate to the
performance estimation strategy and starts the next round of
search after getting the objective function value.

IV. EXPERIMENTS

To evaluate the effectiveness of SEAM, in this section, we
introduce the benchmarks and experimental setup as well as
the experimental results. Specifically, we evaluate SEAM by
answering the following research questions:
• RQ1: How effective is our model re-engineering approach

in reusing trained models?
• RQ2: Does reusing a re-engineered model incur less over-

head than reusing the original model?
• RQ3: Does reusing the re-engineered model mitigate the

defect inheritance?
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A. Experimental Setup

RQ1: How effective is our model re-engineering ap-
proach in reusing trained models? Three representative
CNN models are used in this research question, including
VGG16 [40], ResNet20, and ResNet50 [41]. The three CNN
models are trained on three public classification datasets, in-
cluding CIFAR-10 [42], CIFAR-100 [42], and ImageNet [31].
In total, there are five trained CNN models in this experiment,
including VGG16-CIFAR10, VGG16-CIFAR100, ResNet20-
CIFAR10, ResNet20-CIFAR100, and ResNet50-ImageNet.
Among these trained models, the first four models are publicly
available from the third-party GitHub repositories [43], and the
last model is provided by PyTorch [44].

Given a trained model for N -class classification, we perform
model re-engineering to alter the trained model on two types of
target problems, including binary and multi-class classification
problems. For the binary classification problem, each class of
the trained model corresponds to a target problem. In total,
there are N target problems. A re-engineered model needs to
classify whether an input belongs to the corresponding class or
not. In this scenario, VGG16-CIFAR10, VGG16-CIFAR100,
ResNet20-CIFAR10, and ResNet20-CIFAR100 are altered,
and there are 220 re-engineered models in total. Due to the
significant overhead of generating 1000 re-engineered models,
ResNet50-ImageNet is not used here. We count the number of
removed weights and compare the accuracy of re-engineered
models and trained models on target problems to validate the
effectiveness of SEAM. Also, we compare SEAM with the
state-of-the-art modularization approach [8] to demonstrate the
improvement achieved by our approach.

For the multi-class classification problem, a re-engineered
model classifies an input into one of the concerning classes. In
this scenario, we use CIFAR-100 and ImageNet as our datasets
since there are publicly available schemes for dividing them
into superclasses [42], [45]. A small-size model ResNet20-
CIFAR100 and a large model ResNet50-ImageNet are chosen
for a more comprehensive evaluation. Specifically, CIFAR-
100 has divided the 100 classes into 20 superclasses, each
containing 5 classes with semantically similar labels [42]. For
ResNet20-CIFAR100, we follow this division; thus, there are
20 target problems, each corresponding to a superclass. For
ResNet50-ImageNet, following the public division [45], the
1000 classes are divided into 67 superclasses, of which 3 su-
perclasses are discarded because they contain only 1 class. The
remaining 64 superclasses with a number of classes ranging
from 2 to 119 form 64 target problems. In total, there are 84 re-
engineered models. We count the number of removed weights
and compare the accuracy of re-engineered models and trained
models on target problems to validate the effectiveness of
SEAM. Since the modularization approaches [8], [9] are
designed for binary classification (i.e., each module performs
binary classification) and cannot be applied to multi-class
classification directly, we compare SEAM with the method
of retraining from scratch.

When re-engineering an original model on a target problem,

we follow the settings of our baselines [7], [43] to divide the
target dataset into training and testing sets. The training set is
used to search for a candidate, and the testing set is used to
evaluate the candidate. The major parameters in SEAM include
weighting factor α (see Equation 3) and learning rate ξ (see
Equation 4). The appropriate values of α and ξ could vary from
different trained models and are generally set to 1.0 and 0.05,
respectively. The detailed settings and their impact on model
re-engineering are described in the project webpage [46].

RQ2: Does reusing a re-engineered model incur less
overhead than reusing the original model? In this ex-
periment, the trained models and re-engineered models from
RQ1 are reused, and we compare the reuse overhead of re-
engineered models with the original models. Two metrics are
used to measure the reuse overhead, including the number of
floating point operations (FLOPs) [47], [48] and time cost for
inference. An open-source tool fvcore [49] is used to calculate
the FLOP. Regarding inference time cost, an open-source tool
DeepSparse [35] is used to run both original and re-engineered
models and compute the inference time cost.

RQ3: Does reusing the re-engineered model mitigate the
defect inheritance? In transfer learning, a pre-trained model
generally has a large number of weights and classifications,
and a target problem has insufficient data. Therefore, VGG16
and ResNet20 are not suitable to be transferred, and CIFAR-10
and CIFAR-100 are unsuitable for target problems. Following
the state-of-the-art approach ReMos [7], two widely-used
transfer learning CNN models, ResNet18 and ResNet50, are
used as trained models (i.e., the pre-trained models in transfer
learning), which are trained on ImageNet and are provided by
PyTorch [44]. Five popular transfer learning datasets are used
as target datasets, including MIT Indoor Scenes [50], Caltech-
UCSD Birds [33], 102 Category Flowers [51], Standford 40
Actions [52], and Standford Dogs [53].

We first apply SEAM to alter the trained model on the target
dataset, resulting in a re-engineered model. Then we use the
standard fine-tuning approach [26], [27] to fine-tune the re-
engineered model on the target dataset, resulting in a fine-
tuned model. We compare SEAM with two baselines, stan-
dard fine-tuning [26], [27] and the state-of-the-art approach
ReMos [7]. Standard fine-tuning fine-tunes all of the trained
model’s weights on the target dataset. ReMos first sets a
trained model’s weights irrelevant to the target problem to
zeros, and then uses standard fine-tuning to fine-tune the sliced
model on the target dataset, resulting in a fine-tuned model.
Following the setup of ReMos, we use accuracy (ACC) and
defect inheritance rate (DIR) to measure and compare the
effectiveness of SEAM and the baselines. The accuracy is
computed as the correct classification rate on the target dataset
DT :

ACC =
1

|DT |
∑

(x,y)∈DT

1[f(x) = y]. (6)

The defect inheritance rate is computed as the misclassification
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rate on a set of malicious inputs SM :

DIR =
1

|SM |
∑

(x̂,y)∈SM

1[f(x̂) ̸= y]. (7)

Same as ReMos [7], open source tool advertorch [54] is used
to generate SM based on the trained model and DT . We use
the same parameters as ReMos when using advertorch.

In this experiment, we set the learning rate ξ=0.05 and
weighting factor α=0.5. Regarding the standard fine-tuning
approach and ReMos, we also use the open source project [55]
published by ReMos.

All the experiments are conducted on Ubuntu 20.04 server
with 64 cores of 2.3GHz CPU, 128GB RAM, and NVIDIA
Ampere A100 GPUs with 40 GB memory.

B. Experimental Results

RQ1: How effective is our model re-engineering approach
in reusing trained models?

ResNet20-CIFAR100VGG16-CIFAR10

Fig. 5. The convergence process of SEAM on binary (left sub-figure) and
multi-class (right sub-figure) classification problems.

In this research question, we present the model re-
engineering results of SEAM for two types of target problems
(i.e., binary and multi-class classification). Figure 5 shows
the convergence process of SEAM on two types of target
problems. For instance, the left sub-figure shows the trend
of weight retention rate and classification accuracy along
with search rounds during re-engineering VGG16-CIFAR10
on a binary classification problem. The weight retention rate
descends quickly in the first 50 rounds and then gradually
converges. Although many weights are removed, the re-
engineered model maintains a comparable accuracy to the
original model. The right sub-figure depicts the convergence
process of ResNet20-CIFAR100 on a 5-class classification
problem. Similar to re-engineering VGG16-CIFAR10, the
weight retention rate descends quickly in the first 100 rounds
and then gradually converges. The difference is that the accu-
racy of the re-engineered model may be lower than that of the
original model at the beginning of search. The reason is that
the target dataset of the 5-class classification problem contains
fewer samples than that of the binary classification problem
(500 vs. 10,000). Thus, the former requires more rounds to
optimize the mask and head. As optimization rounds increase,
the mask retains more related weights, and the head learns
to classify better, so the re-engineered model can recover
accuracy and eventually exceed that of the original model. The

TABLE I
THE MODEL RE-ENGINEERING RESULTS OF SEAM REGARDING THE

NUMBER OF WEIGHTS.

Target
Problem Model Name # Weights (million)

Original Re-engineered Reduction(%)

Binary
Classification

VGG16-CIFAR10 15.25 0.62 95.93
VGG16-CIFAR100 15.29 1.47 90.39

ResNet20-CIFAR10 0.27 0.03 88.89
ResNet20-CIFAR100 0.28 0.03 89.29

Multi-class
Classification

ResNet20-CIFAR100 0.28 0.04 85.71
ResNet50-ImageNet 25.50 2.77 89.16

Average - - 89.89

time cost of the search varies by the models, target problems,
and target datasets. The sizes of target datasets vary from 500
to 140,000 samples. For the binary classification problem, each
round takes several seconds. For the multi-class classification
problem, re-engineering ResNet20-CIFAR100 takes 2s per
round. For ResNet50-ImageNet, as each superclass contains a
different number of classes, the time cost varies from several
seconds to a few minutes per round. In this example, re-
engineering VGG16-CIFAR10 and ResNet20-CIFAR100 takes
4s and 2s per round, respectively.

Table I shows the results regarding the number of weights
for the original and re-engineered models. For each trained
model, we count the number of the original model’s weights
and the number of weights retained (i.e., non-zero weights)
in the re-engineered model1. For instance, VGG16-CIFAR10
is altered on 10 target problems, resulting in 10 re-engineered
models. The average number of weights retained (i.e., non-zero
weights) in a re-engineered model is 0.62 million. Compared
to the original model having 15.25 million weights, a re-
engineered model retains only 4.07% of the original model’s
weights, which means that SEAM achieves a 95.93% reduction
in the number of weights. It is worth mentioning that, for
multi-class modularization, although a re-engineered model
requires the classification of more classes, it still has much
fewer weights than the trained model. For instance, a re-
engineered model obtained by altering ResNet20-CIFAR100
can classify five classes; however, the re-engineered model has
only an average of 0.04 million weights, and the reduction in
the number of weights is 85.71%. The reason is that different
classes may contain the same features, which means that
the weights needed to identify one more class may already
be included in the existing weights. Consequently, for all
six trained models, the number of weights retained in re-
engineered models is significantly smaller than the number
of weights in original models. On average, for the six trained
models, SEAM achieves an 89.89% reduction in the number
of weights.

Table II shows the averaged accuracy of original and re-
engineered models. The original and re-engineered models are

1As a head contains a negligible number of weights (e.g., 0.43% at most)
compared to the original model, the head weight count is omitted in the
experiment.
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TABLE II
THE MODEL RE-ENGINEERING RESULTS OF SEAM REGARDING

CLASSIFICATION ACCURACY.

Target
Problem Model Name Avg. ACC (%)

Original Re-engineered Increase(%)

Binary
Classification

VGG16-CIFAR10 96.50 97.12 0.62
VGG16-CIFAR100 86.82 92.93 6.12

ResNet20-CIFAR10 95.64 95.81 0.17
ResNet20-CIFAR100 83.97 90.92 6.95

Multi-class
Classification

ResNet20-CIFAR100 68.29 82.76 14.47
ResNet50-ImageNet 78.83 85.63 6.80

Average - - 5.85

evaluated on the corresponding target problems. Again using
VGG16-CIFAR10 as an example, the average accuracy of the
10 re-engineered models on the 10 target problems is 97.12%.
The original model is also evaluated on the 10 target problems,
and the average accuracy is 96.50%. Compared to the original
model, the re-engineered models achieve comparable accuracy
on target problems, and the averaged accuracy increases by
0.62%. The reason for the improvement may be that model
re-engineering enables the re-engineered model to fit the target
problem during altering the original model. Note that, the
fitting is mainly achieved by removing irrelevant weights
instead of training the weights of the original trained model.
On both binary and multi-class classification problems, for
all the six trained models, re-engineered models can achieve
comparable accuracy to original models, and the averaged
accuracy increases by 5.85%. Due to space limitation, the
detailed results regarding the number of weights and accuracy
are available at the project webpage [46].

When comparing SEAM with the existing modularization
approach [8], we directly use the open source project [56]
published by [8], which decomposes a trained model into
modules, each for a binary classification problem. Since tool
[8] and SEAM are implemented on Keras and PyTorch,
respectively, they cannot directly alter each other’s trained
models. We attempted to convert PyTorch and Keras trained
models to each other; however, the conversion incurs much
loss of accuracy (5% to 10%) due to the differences in the
underlying computation of PyTorch and Keras. To make the
comparison as fair as possible, we run the modules and
trained models published by [8] and compare SEAM to [8]
based on the results of ResNet20-CIFAR10 and ResNet20-
CIFAR100, as the two models are also used in [8]. Specifically,
we analyzed the accuracy and the number of neurons of the
original models and modules (re-engineered model of SEAM).
As modularization [8] decomposes a CNN model mainly by
removing neurons (i.e., setting neurons to zero but retaining all
weights) from convolutional layers, we analyzed the number
of neurons rather than the number of weights.

As shown in Table III, for both ResNet20-CIFAR10 and
ResNet20-CIFAR100, a module retains fewer neurons than
the original model; however, the number of neurons in a
module is reduced by only 18.59% on average. In addition,

TABLE III
THE RESULTS OF MODULARIZATION [8] ON BINARY CLASSIFICATION

PROBLEMS.

Model Name # Neurons (million) Avg. ACC (%)

Original Module Reduction(%) Original Module Increase(%)

ResNet20-CIFAR10 0.20 0.17 14.33 92.85 91.81 -1.04
ResNet20-CIFAR100 0.15 22.84 72.92 59.45 -13.47

Average - - 18.59 - - -7.25

TABLE IV
THE MODEL RE-ENGINEERING AND MODEL RETRAINING RESULTS ON

MULTI-CLASS CLASSIFICATION.

Model Name Avg. ACC (%)

Retrained Re-engineered Increase (%)

ResNet20-CIFAR100 77.15 82.76 5.61
ResNet50-ImageNet 75.56 85.63 10.08

Average - - 7.84

a module retains all the weights of the convolutional layers.
Regarding accuracy, modules achieve a lower accuracy than
the trained models on target problems, and the accuracy
of a module reduces by 7.25% on average. Compared to
modularization [8], model re-engineering can remove a large
number of weights without impairing the accuracy. A major
reason for the improvement of SEAM over [8] is that SEAM
identifies the target problem-related weights more accurately.
SEAM is a search-based approach that identifies the target
problem-related weights directly based on the classification ac-
curacy, while [8] identifies the target problem-related weights
and neurons based on the neuron activation that indirectly
correlates with the accuracy.

We also compare SEAM to model retraining on multi-
class classification problems. Model retraining reuses the
architecture and hyperparameters of the trained model to
retrain a new model from scratch on the target dataset. As
both model re-engineering and retraining alter/train the same
model (architecture) on the same target problem, while the
latter may fit more slowly and even run several times, the
time cost of the retraining would be higher than that of
re-engineering. Regarding accuracy, as shown in Table IV,
re-engineered models outperform retrained models for both
ResNet20-CIFAR100 and ResNet50-ImageNet, and the aver-
age improvement is 7.84%. The reason for the improvement
of model re-engineering may be the difference in the amount
of data. The original model is trained on a large-scale dataset,
while the retrained model is trained on a small-scale target
dataset. The model re-engineering alters the original model to
fit the target problem; thus, the re-engineered model achieves
higher accuracy than the retrained model.

On average, a re-engineered model contains 89.89% fewer
weights than the original model but outperforms the origi-
nal model in accuracy by 5.85%.

RQ2: Does reusing a re-engineered model incur less
overhead than reusing the original model?
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TABLE V
THE NUMBER OF FLOPS REQUIRED BY ORIGINAL AND RE-ENGINEERED

MODELS.

Target
Problem Model Name FLOPs (million)

Original Re-engineered Reduction (%)

Binary
Classification

VGG16-CIFAR10 314.28 75.53 75.97
VGG16-CIFAR100 314.33 111.35 64.58

ResNet20-CIFAR10 41.22 9.34 77.35
ResNet20-CIFAR100 41.22 9.36 77.30

Multi-class
Classification

ResNet20-CIFAR100 41.22 9.76 76.32
ResNet50-ImageNet 4111.53 955.85 76.75

Average - - 74.71

TABLE VI
THE INFERENCE TIME COST REQUIRED BY ORIGINAL AND

RE-ENGINEERED MODELS.

Target
Problem Model Name Time Cost (ms/batch)

Original Re-engineered Reduction (%)

Binary
Classification

VGG16-CIFAR10 6.82 3.79 44.43
VGG16-CIFAR100 6.37 5.55 12.87

ResNet20-CIFAR10 1.40 0.74 47.14
ResNet20-CIFAR100 1.43 0.64 55.24

Multi-class
Classification

ResNet20-CIFAR100 1.45 0.61 57.93
ResNet50-ImageNet 64.19 40.55 36.83

Average - - 42.41

One of the benefits of model re-engineering is to reduce the
reuse overhead. As mentioned in Section IV-A, the number of
FLOPs and inference time cost are used to measure the reuse
overhead. We evaluated the original and re-engineered models
from RQ1 on the two metrics to answer this research question.

Table V shows the number of FLOPs required by the
original and re-engineered models to classify an image with
resolution 32×32, respectively. Note that, following the related
work [57], [58], when computing the number of FLOPs
required by a re-engineered model with a sparse weight
matrix, only the computations involved in non-zero weights are
considered. For instance, despite having the same number of
weights as the original model, a re-engineered model obtained
by altering VGG16-CIFAR10 has 95.93% (see Table I) of its
weights set to zero. As the calculations associated with these
zero weights can be eliminated by special libraries [59], the
calculations associated with these weights are not considered
when calculating FLOPs. VGG16-CIFAR10 requires 314.28
million FLOPs, while the average number of FLOPs required
by a re-engineered model is 75.53 million. SEAM achieves
75.97% reduction in terms of FLOPs. On average, for the six
trained models, SEAM reduces the FLOPs by 74.71%.

To verify that the reduction in the number of FLOPs
can reduce the inference time cost, the open-source library
DeepSparse [35] is used to deploy and run the original and
re-engineered models. Given an input with batch size 16, each
re-engineered model or original model classifies the input 200
times, and the average time cost of classification is used to
measure the inference time cost of a re-engineered model
or an original model. Table VI shows the average inference
time cost of each trained model and its corresponding re-
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Fig. 6. The accuracy (ACC) and defect inheritance rate (DIR) on ResNet18.

engineered models. For instance, the inference time cost of
VGG16-CIFAR10 is 6.82ms/batch, which means that VGG16-
CIFAR10 requires 6.82ms to classify an input with batch size
16. The re-engineered model obtained by altering VGG16-
CIFAR10 incurs an average of 3.79ms/batch inference time
cost. The reduction in inference time cost is 44.43% (calcu-
lated by (1−3.79/6.82)∗100). For all the six trained models,
SEAM achieves an average of 42.41% reduction in inference
time cost, which demonstrates that the reduction in the number
of weights and FLOPs can reduce the inference time cost.

FLOP focus on the computation of neural network layers
containing weights. While apart from the layers containing
weights, the time cost for inference also involves other oper-
ations, such as activation functions, dropout, tensor reshape,
and so on. Therefore, the reductions in the number of FLOPs
and the time cost differ.

Reusing a re-engineered model incurs less reuse overhead
than reusing an original model, while achieving even higher
accuracy in inference than the original model.

RQ3: Does reusing the re-engineered model mitigate the
defect inheritance?

In this experiment, following ReMos, we evaluate SEAM
and the baselines using two metrics, i.e., accuracy (ACC) and
defect inheritance rate (DIR). Figure 6 and Figure 7 show
the results of ResNet18 and ResNet50 on all of five datasets.
In each figure, the first row displays the accuracy (ACC) of
the fine-tuned model, and the second row displays the defect
inheritance rate (DIR) of the fine-tuned model. On average, for
ResNet18, the ACC and DIR achieved by the standard fine-
tuning, ReMos, and SEAM are (80%, 79%), (74%, 40%), and
(79%, 19%), respectively. For ResNet50, the ACC and DIR
are (85%, 66%), (82%, 19%), (84%, 14%), respectively.

The standard fine-tuning approach achieves higher accuracy
on the target datasets than SEAM and ReMos; however, the
cost is much higher DIRs. Compared to the standard fine-
tuning approach, both SEAM and ReMos can achieve lower
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Fig. 7. The accuracy (ACC) and defect inheritance rate (DIR) on ResNet50.

DIRs at the cost of a small accuracy loss, indicating that
removing the weights that are not relevant to the target dataset
can reduce DIRs and improve the robustness of the fine-
tuned model. Overall, for the two models on five datasets,
the averaged DIRs for fine-tuning the re-engineered model
and fine-tuning the original model (i.e., standard fine-tuning
approach) are 16% and 73%, respectively. The reduction in
DIR is 57%, demonstrating the effectiveness of SEAM in
reducing defect inheritance.

Compared to ReMos, SEAM can achieve lower DIRs and
higher ACC. For instance, for ResNet18, the average DIRs
achieved by SEAM and ReMos are 19% and 40%, respectively.
The DIR achieved by SEAM is roughly half of that achieved
by ReMos. Regarding ACC, the average ACC achieved by
SEAM and ReMos is 79% and 74%, respectively. Overall,
for the two models on five datasets, the average DIRs and
ACC for SEAM and ReMos are (16%, 82%) and (29%, 78%),
respectively. SEAM is 13% lower and 4% higher than ReMos
in terms of DIR and ACC, respectively. The reason for the
improvement in DIR achieved by SEAM is the considerable
reduction in the number of weights. ReMos removes only 10%
and 3% weights for ResNet18 and ResNet50, respectively.
Compared to ReMos, SEAM can remove more irrelevant
weights. The reduction in the number of weights is about 50%
for both ResNet18 and ResNet50.

It is worth mentioning that there are some differences
between the results shown in Figure 6 and Figure 7 and the
results shown in ReMos [7], especially in terms of DIR. For
instance, for ResNet18, the average DIRs achieved by ReMos
shown in [7] and our work are 15% and 40%, respectively.
The reason for the differences is that ReMos uses additional
Dropout layers for fine-tuning while ours does not. To make a
more comprehensive comparison of ReMos and SEAM, we
follow the experimental setup of ReMos [7] and plot the
results on ResNet18 in Figure 8. As shown in Figure 8, after
adding Dropout layers, both SEAM and the baselines achieve
better results, as Dropout layers help increase the robustness
of models. The average DIRs achieved by the standard fine-
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Fig. 8. The accuracy (ACC) and defect inheritance rate (DIR) on ResNet18
with Dropout layers.

tuning approach, ReMos, and SEAM are 44%, 20%, and
12%, respectively. Consistent with the above conclusion, our
approach can outperform ReMos. Moreover, we observe that
the DIRs of ResNet50 are lower than that of ResNet18. The
reason for this could be that the increased number of weights
helps increase the robustness. This observation aligns with the
prior works [7], [60].

Overall, SEAM inherits much fewer defects compared to
standard fine-tuning and the state-of-the-art approach.

V. THREATS TO VALIDITY

External validity: Threats to external validity relate to
the generalizability of our results. While the notion of re-
engineering a trained model to improve its reusability is
general, we have only evaluated our approach on CNN models
in this paper. The effectiveness on other types of DNNs, such
as LSTM and transformer, remains to be evaluated. However,
during the search, the objects removed are weights, not CNN-
specific structures such as convolutional kernels. Also, the
search is guided by the classification accuracy and the number
of retained weights. Therefore, the principles of our proposed
approach are not specific to CNN and are applicable to other
types of DNNs as well. We will further investigate it in our
future work.

Internal validity: An internal threat comes from the choice
of trained models and datasets. To mitigate this threat, we use
four representative trained CNN models and evaluate SEAM
on eight well-organized and widely-used datasets.

Construct validity: A threat relates to the suitability of
our evaluation metrics. Evaluating the quality of DNN models
remains an open problem. Measuring only the misclassification
rate of the adversarial samples may not be comprehensive
enough. However, the misclassification rate of adversarial
samples is a representative metric and has also been widely
used in related work [7], [30].
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VI. RELATED WORK

Reusing trained DNN models: Our work is related to reusing
DNN models, including direct reuse [4], [5] and transfer learn-
ing [12], [61]. The work related to direct reuse recommends
a trained model for developers and allows developers to reuse
the model on the target problem directly. For instance, SDS [4]
evaluates trained models using a few efficient test data that
could discriminate multiple trained models and then recom-
mends the best one to reuse. Transfer learning techniques reuse
a model trained to solve a similar problem and fine-tune the
reused model on the target problem. For instance, ResNet [41]
trained on ImageNet for 1000-class classification is widely
reused to develop new models for various target problems by
fine-tuning its weights on the target datasets [61], [62]. The
techniques mentioned above support model reuse; however,
they reuse the entire trained model or the vast majority of
model’s weights. In contrast, this work allows developers to
reuse only the target problem-related weights, thus reducing
reuse overhead and defect inheritance.

DNN modularization and slicing: Similar to our work, DNN
modularization [8], [9] and slicing [7] attempt to reuse part
of trained models. For instance, DNN modularization [8], [9]
decomposes a trained model into modules based on neuron
activation [21], [22]. A module retains part of trained model’s
neurons and can be reused to solve a binary classification prob-
lem. Relying on neuron coverage [21], [22], DNN slicing [7]
removes irrelevant weights and reuses the slice with relevant
weights for fine-tuning. Compared to DNN modularization and
slicing, our work is search-based model re-engineering, which
can remove much more irrelevant weights and hence reduce
more reuse overhead and defect inheritance. Our previous
work CNNSplitter [10] concerns the modularization of CNN
models through searching with genetic algorithms and fixing
the weakness of a model by replacing the corresponding part
with a better module. In contrast, this work can realize the
modularization of general neural network models and the
searching algorithm is more efficient.

DNN pruning: Iterative magnitude pruning [57], [63], [64]
is one of the mainstream network pruning techniques, which
prunes part of weights that are not important for the original
problem to reduce the computational overhead required by
inference on the original problem. Our work removes part
of weights that are irrelevant to a target problem to reduce
reuse overhead and defect inheritance on the target problem.
Apart from their differences in objectives, iterative magnitude
pruning compresses a model by repeatedly removing unim-
portant weights and retraining the retained weights over sev-
eral rounds, while SEAM removes irrelevant weights without
changing retained weights.

VII. CONCLUSION

In this work, we propose the notion of model re-engineering,
which re-engineers a trained DNN model to improve its
reusability. Based on the notion, we propose a search-based
model re-engineering approach named SEAM, which can re-
engineer a trained model by removing many irrelevant weights.

Extensive experiments with four representative CNN models
on eight widely-used datasets demonstrate the effectiveness of
SEAM in reusing trained models as well as reducing reuse
overhead and defect inheritance.

Our source code and experimental data are available at:
https://github.com/qibinhang/SeaM.
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