
LLM-Based Java Concurrent Program to ArkTS Converter
Runlin Liu

∗

Beihang University

China

ler4065@gmail.com

Yuhang Lin
∗

Beihang University

China

yuhanglin35@gmail.com

Yunge Hu
∗

Beihang University

China

hygchn04@gmail.com

Zhe Zhang
∗

Beihang University

China

zhangzhe2023@buaa.edu.cn

Xiang Gao
†

Beihang University

China

xiang_gao@buaa.edu.cn

ABSTRACT

HarmonyOS NEXT is a distributed operating system developed to

support HarmonyOS native apps. To support the new and indepen-

dent Harmony ecosystem, developers are required to migrate their

applications from Android to HarmonyOS. However, HarmonyOS

utilizes ArkTS, a superset of TypeScript, as the programming lan-

guage for application development. Hence, migrating applications

to HarmonyOS requires translating programs across different pro-

gram languages, e.g., Java, which is known to be very challenging,

especially for concurrency programs. Java utilizes shared memory

to implement concurrency programs, while ArkTS relies on mes-
sage passing (i.e., Actor model). This paper presents an LLM-based

concurrent Java program to ArkTS converter.

Our converter utilizes large language models (LLMs) for efficient

code translation, integrating ArkTS’s SharedArrayBuffer API to

create ThreadBridge, a library that replicates Java’s shared memory

model. Using LLM’s Chain-of-Thought mechanism, the translation

process is divided into specialized chains: the TS chain, concurrency

chain, and synchronization chain, each handling TypeScript syntax,

concurrency patterns, and synchronization logic with precision.

This study offers solutions to bridge concurrency model differ-

ences between Java and ArkTS, reducingmanual code rewriting and

speeding up adaptation for HarmonyOS NEXT. Experiments show

the converter successfully compiles 66% of 53 test samples, with

69% accuracy for compiled results. Overall, the approach shows

promise in converting concurrent Java programs to ArkTS, laying

the foundation for future improvements.

KEYWORDS

Source code translations, HarmonyOS NEXT, ArkTS

∗
Authors listed in alpha-beta order.

†
Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00

https://doi.org/10.1145/3691620.3695362

ACM Reference Format:

Runlin Liu, Yuhang Lin, Yunge Hu, Zhe Zhang, and Xiang Gao. 2024. LLM-

Based Java Concurrent Program to ArkTS Converter. In 39th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’24), Octo-
ber 27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3691620.3695362

1 INTRODUCTION

HarmonyOS NEXT introduces a new programming environment

utilizing ArkTS, a superset of TypeScript, to develop native appli-

cations [5]. Migrating applications from Android to HarmonyOS is

challenging due to differences in concurrency models. Java uses a

shared memory model where threads communicate through shared

variables, while ArkTS adopts an actor-based model, where actors

communicate via message passing without shared memory. [4]

Transitioning from Java’s shared memory model to ArkTS’s

actor model is challenging due to the absence of direct equivalents

for thread interactions and synchronization. Manual translation is

time-consuming and error-prone, particularly for large codebases

with complex concurrency patterns.

Existing code translation tools primarily focus on syntactic trans-

formations and fall short when it comes to translating complex

concurrency constructs. Traditional Abstract Syntax Tree (AST)

conversion techniques struggle with handling complex constructs

such as inner classes and concurrency. Tools like JSweet [1], which

translate Java to TypeScript, do not support concurrency programs,

require additional software packages, and only support traditional

TypeScript, not ArkTS. These tools are not suited for new languages

like ArkTS and fail to address the deep semantic transformations

needed for concurrency model conversion. Recent studies show

LLMs’ potential for automated code translation, with Yang et al. [10]

making significant strides. However, translating Java to ArkTS with

LLMs is challenging due to the lack of high-quality ArkTS training

data, leading to incomplete grasp of its syntax and semantics.

To address the complexities of migrating Java applications to

HarmonyOS’s ArkTS, we introduce the Java2ArkTS source code

converter, which ingeniously recreates Java’s shared memory and

synchronization mechanisms within the ArkTS framework. To im-

plement concurrency in ArkTS with a Java-like structure, our tool

provides a custom concurrency library. This library enables shared

memory-like interactions, which ArkTS lacks natively, allowing

developers to write concurrent programs using familiar Java con-

structs and paradigms. The core of this library is the SharedAr-

rayBuffer provided by native ArkTS(TS), which allows true shared

https://doi.org/10.1145/3691620.3695362
https://doi.org/10.1145/3691620.3695362


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Runlin Liu et.al

memory across multiple threads. [3] [8] Unlike traditional ArkTS

arrays, SharedArrayBuffer enables our custom concurrency library

to implement shared memory capabilities, crucial for supporting

complex synchronization and communication patterns in multi-

threaded programming.

Central to our methodology is the utilization of LangChain’s cog-

nitive chain technology, which orchestrates the translation process

into a coherent sequence of well-defined steps. [2] This cognitive

chain, underpinned by the robust understanding of TypeScript by

Large Language Models (LLMs), meticulously navigates the intri-

cacies of semantic transformation from Java to ArkTS. By lever-

aging the close relationship between TypeScript and ArkTS and

the advanced prompt engineering techniques [6], the Java2ArkTS

converter ensures a precise and efficient translation.

The contributions of this paper are summarized as follows:

(1) Simulating Shared Memory in ArkTS: To translate Java’s

shared memory concurrency model, we use ArkTS’s SharedArray-

Buffer and a custom library that replicates Java’s communication

and synchronization interfaces, preserving the original concurrent

behavior in ArkTS.

(2) Leveraging TypeScript and Advanced Prompt Engineering:

Utilizing the extensive understanding of TypeScript by LLMs, we

employ advanced prompt engineering techniques along with chain-

of-thoughtmethodology. [9] This approach breaks down the transla-

tion process into manageable steps, ensuring accurate and efficient

conversion of Java’s complex concurrency constructs into ArkTS.

The source code, datasets, evaluation materials, and demo video

can be accessed at: https://github.com/Java2ArkTS/Java2ArkTS

2 PROJECT USAGE AND ITS ABILITY

The user interaction interface of the source code converter is acces-

sible through a web browser.

Users can upload Java source files, track the translation process,

and reviewresults directly in a user-friendly browser interface. The

converter handlescomplex Java structures, such as inner classes

and concurrency, ensuring semantic and structural accuracy, where

is better thantools like JSweet.

3 TECHNICAL DETAILS

The workflow of our tool is shown in Figure 1. Firstly, in order

to simplify the code conversion issue, we independently design

a ThreadBridge library using the API provided by ArkTS. The

ThreadBridge library mimics multi-threaded operations in the Java

language using ArkTS language and provides corresponding APIs.

Secondly, as the LLM cannot solve such a complex problem in one

step, we decompose the transformation problem into a set of sub-

problems. The mechanism guides the LLM to use the ThreadBridge

library for conversion. If the transformed code fails to compile,

the error is sent back for correction, with a limit on iterations to

prevent loops.

3.1 Memory Sharing Under the Actor Model

TheArkTS concurrencymodel, unlike Java, follows the Actormodel,

which lacks support for memory sharing. To simplify the transla-

tion process, we propose to implement a library using SharedArray-

Buffer to mimic memory sharing. SharedArrayBuffer is an API used

Figure 1: Overall architecture of Java2ArkTS. The Java code

is preprocessed by Java Parser. TypeScript-like code is con-

verted via the TypeScript chain. Concurrent code is trans-

lated using our ThreadBridge shared library, and processed

through the concurrency and synchronization chains. Finally,

we merge the conversion results and check for compilation

errors, producing the converted ArkTS concurrent code.

in TypeSrcipt to create shared memory. It allows multiple threads

to share the same memory area, enabling parallel computing and

efficient data sharing. However, assigning values to SharedArray-

Buffer is intricate since SharedArrayBuffer, being a generic buffer,

does not store data with their corresponding type. However, ArkTS

is a statically typed programming language, which requires devel-

opers to explicitly declare the data types of variables when they are

defined. It is almost impossible for LLM to implement translation

between generic bufferes with certain types. Hence, we design the

ThreadBridge library to simplify the work of LLM.

Specifically, in ThreadBridge, we implement functions for each

basic type to translate it into a sharedArrayBuffer object, then com-

bine these functions into getShared to convert all types to sharedAr-

rayBuffer objects. For instance, Listing 1 shows an example that

converts data of type number into a sharedArrayBuffer Object. It

first creates a sharedArrayBuffer, turns it into typed arrays, assigns

values to typed arrays, and finally returns this typed array and

type marker. Afterward, we design a reader called getXValues to
read the values of the sharedArrayBuffer object. This function first

detects the type of the incoming data. If it is a basic type, it calls the

corresponding type’s function to read its value. In contrast, if it is an

object, the getXValues will traverse its members and recursively

call getXValues. We also design setXValues to assign values to

sharedArrayBuffer objects, which is similar to getXValues.
After implementing memory sharing, we need to solve the prob-

lem of synchronization. We design function synStart to get locks,

and synEnd to release locks, they are based on Atomics. Atomics is

a class in ArkTS which provides a set of static methods for perform-

ing atomic operations on SharedArrayBuffer objects. We simulate

Java’s synchronized by combining Atomics and SharedArrayBuffer.

In ArkTS, we implement the Thread class and Runnable inter-

face similarly to Java. The Thread class can accept objects that

implement the Runnable interface, and invoking the start func-
tion initiates the thread. We utilize the taskpool API in ArkTS to

manage thread creation.

However, taskpool serializes parameters at runtime and loses

member methods during this process. Therefore, we can’t simply

https://github.com/Java2ArkTS/Java2ArkTS


LLM-Based Java Concurrent Program to ArkTS Converter ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

1 function generateNumberShared(n ?: number) {
2 const buffer = new SharedArrayBuffer(8);
3 const sharedArray = new Float64Array(buffer);
4 sharedArray[0] = 0;
5 if (n != null) {
6 sharedArray[0] = n;
7 }
8 return {
9 "sharedValue": sharedArray,
10 "sharedType": "number",
11 };
12 }

Listing 1: An example of generateNumberShared

pass the runnable objects as a parameter to taskpool. Instead, we

store all runnable objects as a static member of Thread class, and

provide the index of runnable objects that need to be run to taskpool.

3.2 Program Translation via Chain-of-Thought

The core of the Java2ArkTS lies in using LangChain tool to create

a chain-of-thought. The prompt method is essential as it doesn’t

require extensive training data. However, large language models

struggle with new languages like ArkTS. Hence, Java2ArkTS first

decomposes the task of code conversion into multiple subtasks,

forming thought chains. These chains can be divided into three

parts:TS chain - converts Java code into TypeScript- specific syntax

in ArkTS code; Concurrent Chain - converts Java concurrency

semantics using the API in the ThreadBridge library for multi-

threaded shared memory; Sync Chain - converts synchronization

code using the API in the ThreadBridge library. In order to make

the conversion results more accurate, we separate the Java source

code by class and guide the LLM to convert them one by one.

Using the same set of prompt words to convert Java code is

inefficient and may result in errors. For example, if we prompt

the LLM to change the usage of synchronized in functions that

do not exist, the large model is likely to add extra usage, but this

is incorrect and may not be easily detected in future checks. To

prevent incorrect modification by LLM and ensure the accurate

targeting of code segments by LLM, we employ the Abstract Syntax

Tree (AST) analysis, which is a mature and easy-to-use method for

analyzing the structure of Java code [7]. We use AST to analyze

each class in Java code and select the appropriate thought chain for

it. Figure 2 shows the general process of selecting a thought chain.

3.2.1 TS Chain. TS chain conversion does not involve concurrent

code. ArkTS is a superset of TypeScript and LLMs are very familiar

with TypeScript, which allows for accurate conversion of Java code

that does not involve concurrency into TypeScript code, allowing

ArkTS to adapt to these TypeScript codes. In more complex cases,

due to our class-by-class conversion approach, the LLM lacks con-

textual information at this stage, which may lead to errors when

independently writing other classes used in the code. Therefore,

Class

Concurrent 
Chain

TS Chain

Sychronization
ChianSychronize

Output

not sychronization

Class Member variables
Initialization

Member variables
serialization

Subsequent 
Operation

Member varibales
exist

Member varibales
not exist

Concurrency 
Exists

not exitst

exist

A E

CB

D

B1 B2 B3 B4

Figure 2: Analyze code features through AST and select ap-

propriate thought chains based on the analysis results.

we prompt the LLM to summarize all Java code into contextual in-

formation and provide it in every subsequent prompt. This method

is also used in other chains.

3.2.2 Concurrent Chain. The Concurrent Chain is the focus of

this project, which achieves memory sharing by enabling LLM to

understand and use the ThreadBridge library one by one. First, we

prompt the LLM to understand and use getValues and setValues.

To ensure the LLM uses these functions more accurately, we assign

specific roles to the LLM at the beginning of the prompt, which

has proven effective in prompt engineering. When explaining a

function, the prompt not only introduces its usage and roles but

also provides a few examples to help the LLM understand. Part of

the prompt is shown in Figure 3.

 

Basic Prompt for GPT

If you are a programmer who is very good at typescript.
Please change the user input classes with the following functions. 
The existing function getValues(obj: any) is passed to a member variable of type any and returns its corresponding value.

 

Sample Prompt for GPT

input:

input:
output:

output:

console.log(this.s);
console.log(getValues(this.s));

a = this.test.getNum();
a = getValues(this.test.getNum());

Figure 3: For some prompts in the concurrent chain, first

assign roles to LLM, then introduce the usage and role of

getValues to LLM, and finally provide a few examples to

enhance understanding.

Then, we prompt the LLM to understand and use getShared.

However, the getShared function requires an instance of the ob-

ject to be passed in, so all member variables need to be initialized

first. During the initialization process, the LLM needs to know the

constructor methods of member variables to correctly create in-

stances without causing compilation errors. To address this, we

design additional sub-chains to prompt LLM to obtain the required

constructor information. Unlike the context summary mentioned

earlier, this prompt requires more precise and targeted output. Even

with significant adjustments made to prompt words, LLM may still

misuse these functions. Therefore, we increase the robustness of

the ThreadBridge library to tolerate most misuse.



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Runlin Liu et.al

3.2.3 Syn Chain. The Sync Chain utilizes the API provided by the

ThreadBridge library to complete the conversion of the synchro-

nization part of concurrent programs. Initially, with the capabilities

of LLM, it replaces the synchronized keyword with synStart and

synEnd, ensuring these functions encase the code blocks that were

originally delineated by synchronized. To manage locking positions

accurately, each class requires a unique identifier for every syn-

chronized block. Consequently, we instruct the LLM to enumerate

the synchronized blocks and generate a corresponding index. This

index is then passed to the synStart and synEnd functions, thereby

accomplishing the conversion of the synchronization code segment.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setting

To validate our converter, we curated 53 Java concurrency code

samples based on classical synchronization patterns like producer-

consumer and reader-writer, ranging from easy to hard levels. We

used JRE and DevEco Studio (HarmonyOS IDE with ArkTS) to

execute and verify the code before and after conversion, using

stable API version 9 for testing to ensure consistent results.

4.2 Evaluation Metrics

Using the dataset above, we transformed Java concurrency code

into ArkTS and verified the correctness of the concurrency behav-

ior in the generated ArkTS programs to confirm the fidelity of the

conversion process. We executed the Java and ArkTS code before

and after conversion, manually assessed their logical consistency,

and evaluated the results based on successful compilation and cor-

rect execution. Also, we analyzed the causes of compilation failures

or runtime errors.

4.3 Results

Among the 53 test samples, 66% of the results pass compilation,

and the accuracy rate is 69% in the successfully compiled results.

The most common error in compilation is the incorrect use of

the ThreadBridge library, since the LLM struggle with additional

requirements, even though the usage of the function has been

described in detail, the LLM may still use it in the wrong place or

pass invalid parameters to it. Adding extra things refers to the fact

that during the transformation process, the LLM does not recognize

the functions or classes provided in the context and writes new

functions and classes on its own, which conflicts with the context.

Table 1: Success Rate of compiling and running

Successful Quantity Failed Quantity Success Rate

Compiling 35 18 66.0%

Running 24 29 45.3%

Our runtime error analysis revealed that nearly two-thirds of

errors were due to the LLM’s incorrect use of the ThreadBridge

library, particularly in complex scenarios. However, for programs

with moderate complexity and standardized coding, our approach

effectively supports accurate conversions, demonstrating reliability

in structured environments.

Table 2: Causes of Compiling Failures and Incorrect Running

Incorrect

ThreadBridge

Using

Adding

Extra

Things

Incorrect

Initialization

Others

Compiling 47.4% 10.5% 10.5% 31.6%

Running 63.6% 0 0 36.4%

5 LIMITATION

Currently, our converter struggles with code that relies on various

imported libraries, making it less effective for real-world applica-

tions using different libraries in Java andArkTS. The low conversion

success rate could be improved by using techniques like Automatic

Program Repair (APR) to fix translation errors or optimizing LLMs

to reduce hallucinations and enhance the overall approach.

6 CONCLUSION

This paper introduces a LangChain-based converter for translating

concurrent Java programs to ArkTS, the language of HarmonyOS

NEXT, using large language models (LLMs) to tackle challenges in

different concurrency models. Experiments show a 66% compila-

tion success rate and 69% accuracy among compiled results from 53

test samples, with common issues including ThreadBridge misuse

and unnecessary elements added by the LLM. Despite these chal-

lenges, the converter shows promise in automating Java-to-ArkTS

translation, reducing manual work and speeding up HarmonyOS

NEXT deployment. Future efforts will aim to enhance accuracy and

support for various concurrency patterns.

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation

of China under Grant Nos (62202026, 62141209).

REFERENCES

[1] 2023. Jwseet. https://github.com/cincheo/jsweet Accessed: 2024.

[2] 2024. LangChain. https://github.com/langchain-ai

[3] Andreas Costi, Brian Johannesmeyer, Erik Bosman, Cristiano Giuffrida, and

Herbert Bos. 2022. On the effectiveness of same-domain memory deduplication.

In Proceedings of the 15th European Workshop on Systems Security. 29–35.

[4] Nathaniel Dempkowski. [n. d.]. Message Passing and the Actor Model. ([n. d.]).

[5] Li Li, Xiang Gao, Hailong Sun, Chunming Hu, Xiaoyu Sun, HaoyuWang, Haipeng

Cai, Ting Su, Xiapu Luo, Tegawendé F Bissyandé, et al. 2023. Software Engineer-

ing for OpenHarmony: A Research Roadmap. arXiv preprint arXiv:2311.01311

(2023).

[6] Ggaliwango Marvin, Nakayiza Hellen, Daudi Jjingo, and Joyce Nakatumba-

Nabende. 2023. Prompt Engineering in Large Language Models. In International

Conference on Data Intelligence and Cognitive Informatics. Springer, 387–402.

[7] Javaparser Project. [n. d.]. javaparser. https://github.com/javaparser/javaparser

[8] Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen

Dolan, Shaked Flur, Jean Pichon-Pharabod, and Shu-yu Guo. 2020. Repair-

ing and mechanising the JavaScript relaxed memory model. In Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language Design and

Implementation. 346–361.

[9] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning

in large language models. Advances in neural information processing systems

35 (2022), 24824–24837.

[10] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan

Hong, Xiaoxue Ma, Zhi Jin, and Ge Li. 2024. Exploring and unleashing the

power of large language models in automated code translation. arXiv preprint

arXiv:2404.14646 (2024).

https://github.com/cincheo/jsweet
https://github.com/langchain-ai
https://github.com/javaparser/javaparser

	Abstract
	1 Introduction
	2 Project Usage and its Ability
	3 Technical Details
	3.1 Memory Sharing Under the Actor Model
	3.2 Program Translation via Chain-of-Thought

	4 EXPERIMENTAL RESULTS
	4.1 Experimental Setting
	4.2 Evaluation Metrics
	4.3 Results

	5 Limitation
	6 Conclusion
	Acknowledgments
	References

