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Abstract
Static binary rewriting has numerous applications in soft-
ware security and systems—such as hardening, repair, patch-
ing, instrumentation and debugging. As such, many different
static binary rewriting tools have been proposed over the
decades. Since binary rewriting can insert/delete/move in-
structions, most existing tools attempt to recover control
flow information from the input binary, and then use this
information to adjust the set of jump targets in the rewritten
binary. Given that the static recovery of control flow infor-
mation is a hard problem in general, most existing tools use
heuristics or simplifying assumptions about the input binary,
such as specific compilers, source languages, etc. However,
the reliance on assumptions is known to be fragile and tends
not to scale in practice. For example, most existing tools
cannot handle very large/complex programs such as web
browsers.

In this paper we present E9Patch, a tool that can statically
rewrite x86_64 binaries without any knowledge of control
flow information. To do so, E9Patch develops a suite of
binary rewriting methodologies, such as instruction punning
and eviction, that can insert jumps to trampolines without
the need to move other instructions. This preserves the set
of jump targets and eliminates the need for control flow
recovery and related heuristics. As such, E9Patch is robust
by design, and can scale to very large (>100MB) stripped
binaries including web browsers such as Google Chrome
and FireFox. We also evaluate the effectiveness of E9Patch
against realistic applications such as binary instrumentation,
hardening and patching.
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1 Introduction
Static binary rewriting has many important applications in
software security and systems, such as program hardening [7,
16, 41], automated repair [17, 32], instrumentation [27, 31]
optimization [12, 34] and debugging [4, 29]. The advantage
of binary rewriting is that it can be applied even when the
source code of the software is unavailable, as is often the
case with most Commercial Off-The-Self (COTS) software.
The importance and usefulness of static binary rewriting
has led to the development of multiple systems and tools [1,
5, 8, 18, 23, 25, 26, 28, 30, 33, 35–37, 39, 40] spanning many
years. Most existing tools use a pipeline consisting of (1) a
disassembler frontend that parses machine code instructions
from the input binary, (2) a static analysis to recover control
flow information (e.g., jump targets, basic blocks, function
boundaries, etc.), (3) a transformation that inserts, deletes,
replaces, or relocates binary code, and (4) a backend that
emits the modified binary file. Since the binary rewriting
process may move instructions, some form of control flow
recovery is necessary in order to to adjust the set of jump
targets in the rewritten binary.

However, the accurate static analysis of binary code is no-
toriously difficult [24]. In the most general case, control flow
information cannot be recovered statically. For example, an
indirect jump may target an address that is only computed
dynamically. Instead, most existing rewriting tools make
simplifying assumptions about the binary code. For example,
some tools assume that all indirect jumps follow a specific
pattern (e.g., jump tables for C-style switch statements, etc.).
However, this approach tends to scale poorly, as the underly-
ing heuristics/assumptions typically break for large enough
binaries [1]. For example, consider a static binary analysis
for detecting indirect jump targets that is 99.9% accurate.

https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/3385412.3385972
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By modeling this value as a probability, the effective accu-
racy drops to ∼37% per 1000 indirect jumps, and essentially
drops to zero per 10000 indirect jumps. Such scales do exist
in practice. For example, the Google Chrome [14] and Fire-
fox [13] binaries contain over 25000 indirect jumps apiece.
For this reason, the reliance on fragile assumptions/heuris-
tics is recognised as a major problem for binary rewriting
systems [1].
In this paper we introduce E9Patch, a tool for static bi-

nary rewriting without the need for control flow recovery
and associated assumptions/heuristics. The key idea behind
E9Patch is to exclusively use binary rewriting methodolo-
gies that are control flow agnostic, meaning that the set of
jump targets from the input binary need not be known and
will be preserved. For example, one such promising method-
ology is instruction punning—an idea previously used to im-
plement dynamic instrumentation [6]. Here, given a set of
patch location instructions P , instruction punning attempts to
substitute each I∈P with a jump instruction J that redirects
control flow to a trampoline that implements some intended
binary patch/instrumentation before returning control flow
back to the main program. However, some instructions are
smaller than jumps (five bytes for the x86_64) and cannot be
substituted directly. To handle this case, instruction punning
will specially engineer a “punned” jump whose byte repre-
sentation is the same as that of any overlapping instruction.
This “punned” jump can therefore safely substitute I with-
out modifying or moving any other instruction. Crucially,
the set of jump targets is also preserved, meaning that the
instruction punning methodology is control flow agnostic.

Although promising, the applicability of instruction pun-
ning is dependant on the byte values of overlapping instruc-
tions. The resulting punned jump will sometimes target an
invalid memory location and cannot be used. For this reason,
instruction punning may suffer from poor coverage, meaning
that only a subset of P can be patched. Boosting patching
coverage is one of the key technical challenges for E9Patch.
To do so, we develop a suite of patching “tactics” that can
be applied when instruction punning fails. For example, one
key idea is instruction eviction, which changes the byte repre-
sentation of overlapping instructions without changing the
execution semantics. This may allow instruction punning to
be applied to cases where it had previously failed. We show
that our tactics can boost patching coverage to at or near
100% for many applications.

Another problem with instruction punning is that suitable
trampoline locations are typically constrained. This may lead
to high memory fragmentation and output file size bloat.
To address this, we introduce a new space optimization—
physical page grouping— that can significantly reduce phys-
ical memory usage (RAM, file size), sometimes by orders
of magnitude. Furthermore, physical page grouping uses

memory-mapped executable code, allowing for physicalmem-
ory resources to be shared by several instances of the same
program.

In summary, the main contributions of this paper are:
• We adapt basic instruction punning to a static binary
rewriting setting. However, instruction punning by itself
does not provide sufficient coverage for most applications.
For this, we develop several new patching tactics, such as
instruction eviction, that are designed to boost patching
coverage to at or near 100%.

• We present an optimization in the form of physical page
grouping—a method for reducing physical memory usage
while preserving memory-mapped executable code.

• We present E9Patch, a powerful static binary rewriting
tool designed to scale to very large binaries. To do so,
E9Patch only uses binary patching methodologies that
preserve the set of jump targets, thereby eliminating the
need for control flow recovery and associated heuristics.

• We evaluate E9Patch against the SPEC2006 benchmark
suite [15] and several large binaries. To demonstrate scal-
ability, we also evaluate E9Patch against web browsers
such as Google Chrome [14] and FireFox [13], each with a
binary size exceeding 100MB. We also consider two realis-
tic applications in the form of binary patching and binary
heap write hardening.

Open Source Release
https://github.com/GJDuck/e9patch

2 Overview and Background
Our aim is to statically rewrite large binaries (executables
and libraries) while preserving correctness and reasonable
performance. Although many static binary rewriting tools
exist [38], most work by relocating code and updating the
control flow (e.g., jump targets) in the modified binary—an
approach known to scale poorly [1]. Instead, our approach
is to design static binary rewriting methodologies that are
control flow agnostic, meaning that the set of jump targets
need not be known in order to correctly rewrite the binary.
The key idea is to treat all instructions (I ) as potential jump
targets (whether they really are or not), and to preserve the
program semantics should control flow happen to jump to I
at runtime. To achieve this, we use a patching methodology
that ensures that all instructions are either:
1. preserved;
2. replaced by an operationally equivalent instruction; or
3. replaced by an instruction that implements the desired

patch or instrumentation.
Patching is strictly performed at the instruction level—a
patch operation must not change the semantics of other (un-
patched) instructions nor modify the set of jump targets.
Furthermore, our approach must also reasonably balance
performance, coverage and scalability.

https://github.com/GJDuck/e9patch
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2.1 Background
We briefly review existing x86_64 instruction patchingmeth-
ods (B0/B1/B2) that are also control flow agnostic.

2.1.1 Baseline B0: Signal Handlers. One old idea is to
replace each patch location instruction with a single-byte
x86_64 int3 instruction. When executed, the int3 instruc-
tion raises an interrupt which manifests as a SIGTRAP signal
that is sent to the program. Next, a signal handler implements
the patch. This approach is traditionally used by debuggers
to implement break points. Although jump targets are pre-
served, the use of interrupts and signal handlers requires
kernel/user mode context switching, and suffers from poor
performance (sometimes by orders of magnitude).

2.1.2 Baseline B1: Jumps. Another old idea is to replace
each patch location instruction with a jump instruction that
redirects control flow to a trampoline that implements the
patch. The trampoline can also execute (or emulate) the dis-
placed instruction if necessary. Control flow is returned to
the main program after the trampoline has finished execut-
ing. This approach is much faster than signal handlers, and
is used by many existing binary instrumentation tools [5, 6,
18, 28].

For the x86_64, this approach can be implemented using
the relative near jump (jmpq rel32) instruction. Here rel32 is
a 32bit signed integer that is added to the program counter
(%rip) in order to implement the jump. The relative near
jump instruction is five bytes long, including one byte for the
opcode (0xe9) and four bytes for the rel32 value. A patch lo-
cation instruction that is greater-than-or-equal-to five bytes
can be directly replaced, but complications arise when the
patch location instruction is smaller than five bytes. One
idea is to replace more than one instruction with a jump.
However, this assumes that the successor instructions are
themselves not jump targets, meaning that some control flow
information must be known. This violates our assumption
of control flow agnosticism, meaning that the generalized
approach cannot be used.

2.1.3 BaselineB2: InstructionPunning. Another recent
idea is to specially engineer jumps that can safely overlap
with other instructions. This is known as instruction pun-
ning—an approach previously used by LiteInst [6] for dy-
namic instrumentation. The basic idea is to find a relative
offset value (rel32) that shares the same byte representation
as any overlapping instruction. The patch instruction can
then be safely replaced with a relative near jump using this
special rel32 value. For example, consider the consecutive
instructions:

mov %rax,(%rbx) add $32,%rax

Suppose that we wish to patch the mov instruction which
has a three-byte x86_64 machine-code representation. Us-
ing instruction punning, we can insert a five-byte relative

jump provided the last two bytes of the rel32 value agrees
with the first two bytes (0x48 0x83) of the overlapping add
instruction:

48 03 4889 c0 2083

e9 XX 48XX c0 2083

Original:

Patched:

mov %rax,(%rbx)

jmpq 0x8348XXXX (punned)

Instruction punning allows jumps to replace instructions
smaller than five bytes. However, the location of the trampo-
line is now constrained and cannot be placed at an arbitrary
address. In the example above, the trampoline must be placed
at the relative offset rel32=0x83480000..0x8348ffff (under
the little endian byte ordering of the x84_64). This is not
always possible, since the relative offset may correspond to
a virtual address that is either occupied by another object
(e.g., .text, .data, or an existing trampoline), or may point
to an invalid address (e.g., NULL or underflow to the negative
addresses range). In the example above, the rel32 value will be
interpreted as a negative offset since the most significant bit
(MSB) is set. If the resulting address is negative it cannot be
used as a trampoline location. As such, instruction punning
can typically only cover a subset of all patch locations for
most applications.

2.2 Our Approach
Although B0 is control flow agnostic, it is far too slow for
most applications. The combination of B1 and B2 improves
performance, but only provides partial coverage of all patch
locations (between 42–94% by our Section 6 experiments).
Our approach is to design a new set of patching tactics that
can similarly patch instructions without knowledge of con-
trol flow information. Thus, if B1/B2 fail, we try new tactics
T1/T2/T3 based on combinations of instruction padding, pun-
ning and eviction. Each new tactic increases the probability
that the patching operation succeeds. The final tactic (T3) is
also designed to trade performance for coverage, and will
likely succeed in cases where previous tactics have failed.
We show that the combination of the baseline and proposed
patching tactics leads to near perfect coverage for many real-
world applications. We also implement our approach in the
form of the E9Patch static binary rewriting tool. Here, “E9”
refers to the opcode of the x86_64 jmpq instruction that is
fundamental to our approach.
Assumptions. No static binary rewriting tool is perfectly
assumption-free. E9Patch aims to minimize as many as-
sumptions as is reasonably possible, including:
• E9Patch does not assume that the input binary was com-
piled with a specific compiler or programming language;

• E9Patch does not assume that symbol/debug information
is available and works with stripped binaries;

• E9Patch does not assume that control flow information is
available or can be recovered.
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• E9Patch does not attempt to symbolize the binary.
That said, E9Patch does make some minimal assumptions.
For example, since E9Patch modifies executable code (e.g.,
the .text section), there is an assumption that the patched
instructions are not read from (as distinct from executed)
or written to (self-modifying code). Like all binary rewrit-
ing systems, E9Patch assumes the instrumentation/patch
is transparent, meaning that the program behaviour is not
changed unintentionally through some side channel (e.g.,
timings, file mappings, etc.). Finally, the current E9Patch
implementation assumes that the input binary itself does not
already use overlapping/punned instructions. However, it
may be possible to relax this assumption in future versions.

The E9Patch tool does not use a built-in disassembler, and
instead relies on instruction information (e.g., locations and
sizes) to be passed in as input from a suitable frontend. The
E9Patch tool rewrites the binary assuming this information
is correct. The motivation for this design is twofold. Firstly,
our patching methodology is local meaning that it is possible
to patch specific instructions without complete disassembly
information being known. Secondly, binary disassembly is
known to be a hard problem [35]. Since E9Patch is low-level,
it also retains flexibility, allowing for the integration with
different disassembly techniques (partial, linear, recursive,
superset [1], probabilistic [25], etc.). For the purpose of the
evaluation in Section 6, we implemented a basic wrapper
frontend that applies linear disassembly to the (.text) sec-
tion of the input binary.

3 Patching Tactics and Strategies
The baseline instruction patching methodologies (B1/B2)
do not provide sufficient coverage for most applications.
In this section, we design a new set of tactics (T1/T2/T3)
that (1) boost the coverage of instruction patching, and (2)
do not require control flow information to work correctly.
Here, we consider a working example based on the following
instruction sequence:

Ins1: mov %rax,(%rbx) Ins3: xor %rax,%rcx
Ins2: add $32,%rax Ins4: cmpl $77,-4(%rbx)

Themachine code and instruction layout is shown in Figure 1
(Orig). We assume that the intended patch instruction is
Ins1 (highlighted). For the sake of example, we will assume
that jumps to negative relative offsets (where the MSB of the
rel32 is set) are invalid. Thus, baseline instruction punning
(Figure 1 line B2) yields an invalid trampoline location so
cannot be used.

3.1 Tactic T1: Padded Jumps
The x86_64 relative near jump is normally encoded in five
bytes: one byte for the opcode and four bytes for the rel32
offset. However, other encodings that use more bytes are
possible. One idea is to pad the jump instruction with ad-
ditional bytes in the form of redundant instruction prefixes.

48 03 4889 c0 2083 48 c131 83 fc 4d7b

e9 XX 48XX c0 2083 48 c131 83 fc 4d7b

48 XX 48e9 c0 2083 48 c131 83 fc 4d7b

48 e9 4826 c0 2083 48 c131 83 fc 4d7b

e9 XX e9XX YY YYYY 48 c131 83 fc 4d7b

48 03 e989 YY YYYY 48 c131 83 fc 4d7b

eb 03 4807 c0 2083 48 e931 83 fc 4d7b

eb 03 4807 c0 2083 e9 e9YY 83 fc 4d7b

48 03 4889 c0 2083 48 e931 83 fc 4d7b

Orig.

B2

T1(a)

T1(b)

T2(a)

T2(b)

T3(a)

T3(b)

T3(c)

Ins1 Ins2 Ins3 Ins4

0 3 7 10

Figure 1. Here B2 is baseline instruction punning, tactic T1
is padded jumps, tactic T2 is successor eviction, and tactic T3
is neighbour eviction. The patch location (Ins1) is highlighted
in the (Orig.) instruction sequence. Here (e9 + 4-bytes) is a
32-bit relative near jump, (eb + 1-byte) is an 8-bit relative
short jump, and (XX/YY) represent byte values chosen by the
rewriting tool.

The x86_64 supports multiple instruction prefixes (e.g., the
REX prefix, segment overrides (es, ss, etc.), and operand
override 0x66) that do not change the semantics of the jump
instruction.
Instruction padding is illustrated in Figure 1 lines T1(a)

and T1(b). Here, T1(a) uses a punned jump with a single byte
of padding (using a redundant REX=0x48 prefix), and T1(b)
uses two bytes of padding (an additional redundant segment
override prefix es=0x26). These prefix values do not change
the semantics of the jump instruction. The more padding
that is used the more constrained the relative offset becomes.
For example, we have rel32=0x83480000..0x8348ffff for
zero bytes of padding (B2), rel32=0xc0834800..0xc08348ff
for one byte of padding (T1(a)), and rel32=0x20c08348 for
two bytes of padding (T1(b)). Assuming that negative offsets
are invalid, only T1(b) yields a valid value.

Like baseline instruction punning (B2), tactic T1 is control
flow agnostic. However, the applicability of T1 depends on
the length of the patch instruction. For example, T1 grants
two additional patch attempts for the three-byte mov instruc-
tion from Figure 1, and this generalizes to one less than the
length of the patch instruction for other cases. This also
means that T1 does not help single-byte patch instructions
as there is no room for additional padding. When applicable,
each subsequent pun attempt is more constrained than the
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last. Nevertheless, even weakly constrained jumps may be
invalid, as illustrated by B2 and T1(a).

3.2 Tactic T2: Successor Eviction
Even padded jumps may fail to find a valid trampoline lo-
cation, meaning that more aggressive patching tactics may
need to be employed. One idea is to relax the preservation
of the successor instruction bytes, provided that an opera-
tionally equivalent replacement instruction can be found. For
this we introduce the notion of instruction eviction. Essen-
tially, instruction eviction replaces a victim instruction IVictim
with a jump instruction to an evictee trampoline. The evictee
trampoline does nothing other than to execute (or emulate)
IVictim before jumping back. Since the evicted instruction is
replaced by a jump, the byte representation also changes.
This makes it possible to find new puns where previous
attempts failed.

Successor eviction is a two step process and is illustrated
in Figure 1 T2(a) and (b). In the first step T2(a), the successor
instruction (Ins2) is evicted using tactic B2, and is replaced by
a jump instruction to an evictee trampoline (at some offset
between 0x48000000..0x48ffffff). For the sake of exam-
ple, we shall assume a valid evictee trampoline location can
be found. In the second step T2(b), we essentially “reapply”
B2/T1 to Ins1. Since Ins2 has been replaced by a jump, its
byte representation has also changed, allowing for new valid
puns to be discovered where previously none were available.
As with T1, successor eviction is control flow agnostic.

Although the victim instruction is replaced by a jump, the
semantics of the instruction is unchanged and the set of jump
targets is also preserved. Unlike T1, successor eviction can be
applied to even single-byte instructions. That said, instruc-
tion eviction also introduces extra redirections to evictee
trampolines, and this may translate into additional perfor-
mance overheads. As such, successor eviction is only applied
to cases where B1/B2/T1 failed to patch the instruction.

3.3 Tactic T3: Neighbour Eviction
If both T1 and T2 fail, another idea is to evict a “neighbouring”
instruction rather than the successor. The space freed by the
eviction can then be used to implement a “double” jump to
the trampoline. This is the neighbour eviction tactic (T3).

Neighbour eviction requires an elaborate setup. First, a vic-
tim instruction IVictim is chosenwithin the unconditional short
jump distance of the patch instruction, i.e., within −128..127
bytes. Next, IVictim is evicted, and replaced by two (possibly
punned) relative jump instructions, JVictim and JPatch:

1. Jump JVictim redirects control flow from IVictim’s location
to IVictim’s evictee trampoline. As with T2, this serves as a
replacement of the victim instruction; and

2. Jump JPatch redirects control flow to the trampoline im-
plementing the original patch.

Finally, the patch location instruction is replaced by an un-
conditional short jump JShort that redirects control flow to
JPatch’s location. The patch trampoline can now be reached
using a “double jump” (JShort→JPatch→trampoline) all while
preserving the semantics of the victim instruction IVictim. Al-
ternatively, the victim instruction itself may happen to be a
patch location. In this case, JVictim will target IVictim’s patch
trampoline rather than an evictee trampoline.

Neighbour eviction is illustrated in Figure 1 T3(a)(b)(c). In
this example, instruction Ins3 has been chosen for eviction.
In the general case, both Ins2 and Ins4 are also potential can-
didates. Step T3(a) inserts a punned jump instruction (JPatch)
inside victim Ins3 by overwriting the last byte. In the general
case, jumpJPatch may override any victim instruction byte ex-
cept for the first. For the sake of example, we assume that the
resulting offset rel32=0x4dfc7d83 points to a valid trampo-
line location. Next, step T3(b) replaces the patch instruction
with an unconditional short jump (opcode 0xeb + one byte rel-
ative offset rel8=7). This sets up the jump JShort→JPatch. Fi-
nally, step T3(c) replaces the victim instruction Ins3 by a jump
JVictim to the evictee trampoline. Again, for the sake of exam-
ple, we assume that offset rel32=0x7b83e900..0x7b83e9ff
points to at least one valid evictee trampoline location.

Neighbour eviction (T3) is complex yet powerful, and can
often be applied even when the other tactics have failed. The
key is the number of potential victim instructions. For exam-
ple, if we assume an average instruction length of ∼4 bytes,
this translates into approximately 64 potential victims, mean-
ing that at least one suitable victim is likely to be found. For
this reason, neighbour eviction can boost patching coverage
to at or near 100% for many applications. As with the other
tactics, T3 is also control flow agnostic since all potential
jump targets are either preserved, patched, or replaced by
an operationally equivalent instruction. In terms of perfor-
mance, the “double jump” of neighbour eviction introduces
an extra level of indirection compared to tactics T1 and T2,
and this can translate into additional runtime overheads.
Accordingly, tactic T3 is only used as a last resort, and is
only applied to cases where B1/B2/T1/T2 failed to patch the
instruction.

Example 3.1 (Binary Patching). One application of E9Patch
is binary patching [32], i.e., fixing bugs at the binary-level
rather than the source-code level.We consider a simple proof-
of-concept case study based on the use-after-free vulnerabil-
ity CVE-2019-184081. Figure 2(a) shows the developer source-
level patch that we intend to apply at the binary level. For
sake of example, we assume that the source code is unavail-
able, and that we choose to patch the first instruction (at
address 422a61) after the call to free. All of B1/B2/T1/T2 fail
to patch the instruction, meaning that T3 must be used. To
apply T3, we must choose a victim instruction to evict, in this
case the testb instruction at address 422ad1 (Figure 2(c)).
1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18408

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18408
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49699eda: 89 dd mov %ebx,%ebp
49699edc: 50 push %rax
49699edd: 48 8b 45 d0 mov -0x30(%rbp),%rax
49699ee1: c6 80 98 03 00 00 01 movb $0x1,0x398(%rax)
49699ee8: 58 pop  %rax
49699ee9: e9 75 8b d8 b6       jmpq 422a63

422a5b: ff 15 6f 2a 2a 00 callq *0x2a2a6f(%rip)
- 422a61: 89 dd mov %ebx,%ebp
+ 422a61: eb 70 jmp 422ad3
422a63: e9 be fc ff ff jmpq 422726

ret=read_data(a, buff, 
size, offset);

- if (ret != ARCHIVE_OK && \
- ret != ARCHIVE_WARN)
+ if (ret != ARCHIVE_OK && \
+     ret != ARCHIVE_WARN) {

ppmd7.free(&rar->context);
+    rar->start_new_table = 1;
+ }

(b) Binary code

(e) Original trampoline(a) Developer patch in Source code

- 422ad1: f6 43 18 02 testb $0x2,0x18(%rbx)
+ 422ad1: e9 00 e9 02 74 jmpq 744513d6
+ 422ad3: e9 02 74 27 49 jmpq 49699eda
422ad5: 74 27 je 422afe 
422ad7: 49 8b b6 a0 00 00 00 mov 0xa0(%r14),%rsi

744513d6: f6 43 18 02 testb $0x2,0x18(%rbx) 
744513da: e9 f6 16 fd 8b       jmpq 422ad5

(d) Evictee trampoline

(c) Victim instruction(eviction)

𝐽1

𝐽2
𝐽3

49699eda: 89 dd mov %ebx,%ebp
49699edc: c6 83 98 03 00 00 01 movb $0x1,0x398(%rbx)
49699ee3: e9 7b 8b d8 b6       jmpq 422a63

422a5b: ff 15 6f 2a 2a 00 callq *0x2a2a6f(%rip)
- 422a61: 89 dd mov %ebx,%ebp
+ 422a61: eb 70 jmp 422ad3
422a63: e9 be fc ff ff jmpq 422726

ret=read_data(a, buff, 
size, offset);

- if (ret != ARCHIVE_OK && \
- ret != ARCHIVE_WARN)
+ if (ret != ARCHIVE_OK && \
+     ret != ARCHIVE_WARN) {

ppmd7.free(&rar->context);
+    rar->start_new_table = 1;
+ }

(b) Binary code

(e) Patch trampoline(a) Developer patch in source code

- 422ad1: f6 43 18 02 testb $0x2,0x18(%rbx)
+ 422ad1: e9 00 e9 02 74 jmpq 744513d6
+ 422ad3: e9 02 74 27 49 jmpq 49699eda
422ad5: 74 27 je 422afe 
422ad7: 49 8b b6 a0 00 00 00 mov 0xa0(%r14),%rsi

744513d6: f6 43 18 02 testb $0x2,0x18(%rbx) 
744513da: e9 f6 16 fd 8b       jmpq 422ad5

(d) Evictee trampoline

(c) Victim instruction (eviction)

49699eda: 89 dd mov %ebx,%ebp
49699edc: 50 push %rax
49699edd: 48 8b 45 d0 mov -0x30(%rbp),%rax
49699ee1: c6 80 98 03 00 00 01 movb $0x1,0x398(%rax)
49699ee8: 58 pop  %rax
49699ee9: e9 75 8b d8 b6       jmpq 422a63

422a5b: ff 15 6f 2a 2a 00 callq *0x2a2a6f(%rip)
- 422a61: 89 dd mov %ebx,%ebp
+ 422a61: eb 70 jmp 422ad3
422a63: e9 be fc ff ff jmpq 422726

ret=read_data(a, buff, 
size, offset);

- if (ret != ARCHIVE_OK && \
- ret != ARCHIVE_WARN)
+ if (ret != ARCHIVE_OK && \
+     ret != ARCHIVE_WARN) {

ppmd7.free(&rar->context);
+    rar->start_new_table = 1;
+ }

(b) Binary code

(e) Original trampoline(a) Developer patch in Source code

- 422ad1: f6 43 18 02 testb $0x2,0x18(%rbx)
+ 422ad1: e9 00 e9 02 74 jmpq 744513d6
+ 422ad3: e9 02 74 27 49 jmpq 49699eda
422ad5: 74 27 je 422afe 
422ad7: 49 8b b6 a0 00 00 00 mov 0xa0(%r14),%rsi

744513d6: f6 43 18 02 testb $0x2,0x18(%rbx) 
744513da: e9 f6 16 fd 8b       jmpq 422ad5

(d) Evictee trampoline

(c) Victim instruction(eviction)

𝑱𝟏

𝑱𝟐
𝑱𝟑

Figure 2. Binary patching example to fix CVE-2019-18408 using T3. In sub-figure (c), the grey and underlined bytes are punned
and shared by multiple instructions.

The testb instruction is replaced by two punned jumps:
JVictim to the evictee trampoline of the evicted instruction
(d), and JPatch to the trampoline implementing the patch (e).
Finally, the original instruction at address 422a61 is replaced
by a short jump JShort to JPatch.
The result is essentially spaghetti code with overlapping

instructions. Nevertheless, the correct patch semantics have
been implemented and the set of jump targets has been pre-
served. For example, a jump that targets 422ad1will execute
the evictee trampoline, thereby preserving the original se-
mantics of the evicted instruction. This example also high-
lights the locality of our patching methodology. Only two
instruction locations are modified, and only partial disas-
sembly of the region around the patch location is required.
□

3.4 Strategy S1: Reserve Order Patching
Tactics B1/B2/T1/T2/T3 can be used to patch individual in-
structions. However, many applications need to patch mul-
tiple instructions. Complications may arise if the patching
tactics interfere with each other. For example, suppose that
an application needs to patch both instructions Ins1 and Ins2
from Figure 1. If we patch Ins1 first using tactic T1, the rela-
tive offset (rel32) of the punned jump instruction will overlap
with (and now depends on) Ins2’s specific byte values. Effec-
tively, punning “locks-in” the byte values of any overlapping
instruction. A similar problem exists for tactics T2 and T3.

To manage multiple patch locations we use a reverse order
patching strategy (S1). The basic idea is to patch instruc-
tions in order of “highest to lowest” address, i.e., reverse
execution order. This exploits the property that instruction
punning only ever introduces dependencies with successor
instructions. Thus, if we patch in reverse order, we only ever
introduce dependencies on instructions that have already
been patched. For example, the reverse order patching strat-
egy will patch Ins2 first, modifying Ins2’s bytes, and possibly
modifying/locking the bytes of Ins3 or Ins4 (depending on
which patching tactic is applied). Only after Ins2 is patched
do we attempt to patch Ins1. This time, patching Ins1 does
not affect Ins2.

The reverse order patching strategy maintains a Boolean
lock state of all relevant instruction bytes. Initially, all bytes
are in the unlocked state. When a patching tactic is applied,

some bytes will be locked to disallow further modification.
An instruction byte will be locked if one of the following
conditions apply:
1. Modified: The byte value was overwritten.
2. Punned: The byte value was not overwritten, but is used

as part of a punned jump instruction (B2/T1/T2/T3).
The highlighted bytes in Figure 1 will be locked after the
application of the corresponding tactic. For example, in Fig-
ure 1 T3, bytes {0, 1, 7..13} will be locked. Note that byte 2
(with value 0x03) remains unlocked despite being part of the
patch instruction, since this byte was neither modified nor
used by a punned jump instruction. Byte 2 can be modified
by the application of a future T3 patch operation. Tactics
T1-T3 are restricted to (1) only modify unlocked bytes, and
(2) only lock bytes after the current patch location. This also
restricts T3 short jump to positive offsets, effectively halving
the number of potential eviction locations. However, we find
that this restriction has a minimal impact in practice.

4 Memory and File Size Management
Tactics B1/B2/T1/T2/T3 insert jumps to trampolines thatmust
be loaded into the patched program’s virtual address space.
In the case of instruction punning, the corresponding tram-
poline locations are constrained by the byte values of over-
lapping instructions. This may prevent trampolines from
being packed contiguously, potentially leading to high frag-
mentation and poor memory utilization. Furthermore, in the
context of static binary rewriting, the file size of the patched
binary must also be considered. Normally, executable code is
directly mmap’ed from the binary (i.e., file-backed mapping),
allowing for multiple instances of the same program to share
the same physical memory resources (RAM, disk). Naïvely
applying file-backed mapping to fragmented memory can
significantly bloat the size of the patched binary.

Memory fragmentationmay be partlymitigated by “group-
ing” trampolines into the same virtual pages whenever poss-
ible—an idea first introduced by LiteInst [6]. For example, in
Figure 1 B2, the trampoline can be placed at any relative off-
set within the range rel32=0x83480000..0x8348ffff. The
trampoline can therefore be “grouped” with any other tram-
poline that happens to be placed within this range. That said,
trampoline locations are often sufficiently constrained so as
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Figure 3. Physical page grouping example. Here, approach
(a) implements a naïve one-to-one mapping between phys-
ical P(a) and virtual V(a) pages. Approach (b) implements
physical page grouping by mapping a single “merged” physi-
cal page P(b) into the virtual address space V(b) three times—
effectively reducing physical memory usage by two thirds.

to prevent meaningful grouping. For example, only one exact
relative offset rel32=0x20c08348 is valid for Figure 1 T1(b).
In the worst case there will be ∼1 trampoline per virtual
page, leading to a very poor virtual memory utilization (e.g.,
∼2.8% from [6]).
Physical Page Grouping. Despite the potential for high virtual
memory fragmentation, it may still be possible to optimize
the physical memory usage of the patched program. For this
we introduce physical page grouping—a space optimization
designed to merge and share physical memory resources. As
a motivating example, we consider a patched program using
five trampolines t1–t5 spread over three virtual pages 1–3,
as illustrated in Figure 3 V(a). The memory between trampo-
lines is not used, leading to poor virtual memory utilization.
Furthermore, a naïve one-to-one mapping from physical P(a)
to virtual V(a) memory will translate the problem into poor
physical memory utilization. For example, in Figure 3 P(a),
a total of three (mostly empty) physical pages will be used.
Assuming that P(a) is file-backed, this also bloats the size of
the patched binary file.

Physical page grouping aims to optimize physical memory
utilization by merging pages with non-overlapping trampo-
lines. These “merged” physical pages can then be mmap’ed to
the same virtual address locations as the naïve approach, ef-
fectively implementing a one-to-manymapping. For example,
the three physical pages from Figure 3 P(a) can be merged
into the single physical page from P(b). This “merged” phys-
ical page can then be mmap’ed into the patched program’s
virtual address space three times, as shown by V(b). This
places each trampoline t1–t5 at the same virtual address
as the naïve approach V(a), but only uses a single physical
page—effectively reducing physical memory usage by two
thirds.

The main challenge for physical page grouping is to find
sets of physical pages that can be merged. For this, our
E9Patch implementation divides the virtual address space

into a set of blocks B ofM consecutive pages. Here,M is some
predetermined granularity that controls the aggressiveness
of the optimization, with M=1 being the most aggressive.
Trampolines that span block boundaries are treated as two
mini-trampolines in two different blocks. Next, a partitioning
algorithm organizes the elements of B into a set of groups
GB ⊆ P(B) such that (1) each b ∈ B appears in exactly one
group, and (2) for all grp ∈GB and for allb1,b2 ∈ grp, then the
trampolines in b1 and b2 are disjoint relative to the respec-
tive block base. Each group can then be merged into a single
physical block that is mapped into the patched program’s
virtual address space multiple times. For the example in Fig-
ure 3, we use M=1 and the partitioning algorithm yields
GB={{page 1, page 2, page 3}}. In general, partitioning is a
combinational optimization problem, and many different par-
titioning algorithms are possible. For E9Patch, we found
that a simple greedy algorithm gives reasonable results for
reasonable performance.

Physical page grouping has the side effect of loading tram-
polines into redundant locations. For example, all five tram-
polines t1–t5 are loaded into each virtual page 1–3 from
Figure 3 V(b). However, these redundant locations remain
unused, and do not affect the behaviour of the patched pro-
gram. Another issue is that physical page grouping may gen-
erate large numbers of mappings. Depending on the applica-
tion, this number may exceed the default mapping limit for
Linux (vm.max_map_count=65536). One solution is to raise
the mapping limit, however this requires privileged/root
access and may not always be possible. Another solution is
to use a coarser granularity M>1 to reduce the number of
mappings in exchange for increased physical memory usage.
ForM≥64, the number of mappings will always be below the
default system limit for a single binary. The current E9Patch
implementation supports multiple granularities, allowing
the user to tune the number of mappings (versus physical
memory usage) accordingly.

5 Implementation
The E9Patch tool takes as input an unpatched binary (exe-
cutable or shared object), disassembly information (instruc-
tion locations and sizes), a set of patch instruction locations,
and a set of trampoline templates. E9Patch outputs a mod-
ified binary with one of B1/B2/T1/T2/T3 applied to each
patch location instruction, thereby diverting control flow
to a corresponding trampoline implementing the desired
patch. E9Patch is low-level by design, and can be used as the
foundation for many different applications, such as binary
patching, hardening and other instrumentation applications.

5.1 ELF Rewriting
The ELF file format is primarily designed to simplify link-
ing and minimize loading time, rather than be a file format
amenable to rewriting. Nevertheless, E9Patch avoids many
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of the complications of ELF rewriting by strictly patching
existing segments in place. This means that data is never
moved, and avoids the need to recompute offsets throughout
the ELF file.

Some new data, such as executable trampoline and instru-
mentation segments, also needs to be added to the patched
binary. To do this, E9Patch appends the new data to the
end of the file, also avoiding the need to move existing data.
The new physical pages must also be mapped into the pro-
gram’s virtual address space during program loading. To do
so, E9Patch integrates a small loader into the output binary.
The loader replaces the entry point, and mmaps the tram-
poline/instrumentation pages into their correct positions
before returning control flow to the “real” entry point. We
now summarize some of the main features of the E9Patch
binary rewriter.
Position Independent Executables. E9Patch can be applied to
both position independent executable (PIE) and non-PIE code.
Indeed, PIE binaries are becoming increasingly common in
modern Linux distributions. The main motivation behind PIE
is the security benefits offered by address space randomization
(ASLR). Large security-sensitive programs, such as Google
Chrome, are PIE by default.

Interestingly, PIE code is easier to patch than non-PIE code.
This is because PIE code will be loaded into a high memory
addresses by the dynamic linker—a safe distance from the
invalid negative address range. Non-PIE code is typically
loaded at a low fixed addresses chosen by the (static) linker.
For example, ld chooses a low address (e.g., 0x400000) by
default, meaning that most negative offsets will be invalid.
With PIE, the number of valid offsets for punned jump in-
structions effectively doubles. That said, it is important for
static binary rewriting tools to support both PIE and non-
PIE code. Non-PIE binaries will continue to be used into the
foreseeable future.
Shared Objects/Libraries. E9Patch can be applied to shared
objects/libraries (e.g., libc.so) in addition to executables.
Unlike PIE, we found that negative offsets are generally in-
compatible with the dynamic linker. This is because the
dynamic linker tends to load other shared objects into this
address range.
Mixing Patched/Non-Patched Code. E9Patch does not move
instructions, making it possible to safely mix patched and
non-patched binary code without additional precautions. For
example, the main executable may be patched but the library
dependencies need not be, or vice versa. In contrast, most
other binary rewriting tools work by moving instructions to
new locations. This can create a problem if the non-patched
code calls a pointer to a function that has been relocated,
i.e., the callback problem. To solve the issue, these tools may
require the entire dependency tree to be rewritten.

5.2 Limitations
The combination of tactics T1–T3 can significantly boost
patching coverage for many applications. However, perfect
coverage is not guaranteed. This mostly occurs for hard cases,
including:
(L1) virtual address space shortages,
(L2) single-byte instructions,
(L3) attempting to patch many instructions.
A program that has very large code or data segments (L1)
may limit the virtual address space available for trampo-
lines [6]. Single-byte instructions cannot be patched using
T1, and T3 can only target a single (punned) short jump loca-
tion, thereby limiting applicability (L2). For the x86_64, this
mostly affects ret, push and pop, since most other common
instructions are 2 bytes or larger. Finally, since patching tac-
tics can be interdependent, attempting to patch all (or nearly
all) instructions can cause interference and limit applicabil-
ity (L3). Fortunately, (L1) does not apply to most programs,
and (L2) and (L3) are irrelevant for many applications. For
example, a binary hardening tool that instruments all pointer
dereference instructions (≥2 bytes) will not be affected by
(L2) nor (L3). Furthermore, (L3) is irrelevant for binary patch-
ing, one of the main application domains for E9Patch.

Assuming that an instruction cannot be patched, the cor-
rective action largely depends on the application. For ex-
ample, binary hardening can usually tolerate some reduced
coverage. For other applications that prioritize coverage over
performance, using B0 as a fallback may be appropriate.

6 Evaluation
In this section we evaluate the timing, coverage, file size
and scalability of a prototype version of E9Patch. We also
present a practical application in the form of binary memory
error detection using low fat pointers [10, 11].

6.1 Performance
To evaluate the performance of E9Patch we use the full2
SPEC2006 [15] benchmark suite, including programs imple-
mented in C, C++, and Fortran. We compile each benchmark
using the default system compiler (gcc/g++/gfortran). We
also choose to compile in non-PIE mode in order to make
patching more challenging. We also instrument several de-
fault binaries that were installed with Ubuntu 16.04.6 LTS.
For this, we choose binaries that were used in the prepara-
tion of this paper (such as pdflatex, etc.) as well as some
prominent shared library dependencies. We have also tested
E9Patch on many other system binaries not included in
Table 1, and all work as expected. Finally, to demonstrate
scalability, we instrument some very large binaries such as
Google Chrome [14] and FireFox (libxul.so) [13].

2Excluding 481.wrf which failed to compile using modern gfortran.
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Table 1. Patching Statistics. Binaries marked by (†) are position independent executables (PIE).

Binary Size Jmp/Jcc instructions (A1) Heap write instructions (A2)
(MB) #Loc Base% T1% T2% T3% Succ% Time% Size% #Loc Base% T1% T2% T3% Succ% Time% Size%

perlbench 1.25 36821 86.88 7.40 1.45 4.27 100.00 459.59 174.28 7522 71.16 24.42 1.18 3.23 100.00 244.90 116.66
bzip2 0.07 1484 79.85 13.61 2.22 4.31 100.00 280.85 199.45 1044 68.39 26.05 2.49 3.07 100.00 279.67 170.95
gcc 3.77 97901 85.66 8.29 1.62 4.43 100.00 364.41 164.50 14328 70.60 24.95 0.68 3.78 100.00 148.73 109.90
bwaves 0.08 314 71.34 2.87 0.32 25.48 100.00 107.08 137.01 1168 92.55 7.36 0.00 0.09 100.00 139.02 142.43
gamess 12.22 125620 59.91 15.01 5.05 19.76 99.73 226.16 131.14 279592 87.58 9.65 0.50 2.20 99.94 321.89 136.93
mcf 0.02 295 68.47 20.00 4.41 7.12 100.00 194.92 203.75 220 75.91 20.00 1.36 2.73 100.00 141.02 221.51
milc 0.14 1940 80.62 13.40 1.29 4.69 100.00 115.03 157.13 699 84.84 13.16 0.29 1.72 100.00 117.54 119.14
zeusmp 0.52 3191 53.74 11.66 2.98 30.30 98.68 145.34 125.28 6106 82.61 12.15 0.39 4.67 99.82 131.50 128.74
gromacs 1.20 12058 80.19 11.49 1.38 6.94 100.00 116.16 133.01 16940 93.87 5.50 0.11 0.53 100.00 148.07 123.71
cactusADM 0.91 12847 78.94 13.32 2.30 5.44 100.00 101.43 140.70 5420 86.85 11.62 0.41 1.13 100.00 119.48 113.45
leslie3d 0.18 2584 44.43 27.67 12.46 15.44 100.00 151.89 174.56 2761 91.34 8.22 0.04 0.40 100.00 172.08 138.47
namd 0.33 4879 73.42 13.88 2.75 9.96 100.00 146.78 154.81 2498 71.46 28.14 0.20 0.20 100.00 138.01 120.42
gobmk 4.03 17912 75.88 14.72 2.57 6.83 100.00 368.97 113.80 2777 79.33 15.56 0.94 4.18 100.00 179.24 102.30
dealII 4.20 61317 71.31 14.99 4.50 9.19 100.00 386.08 144.34 25590 80.47 17.83 0.17 1.52 99.99 168.86 112.27
soplex 0.49 10125 79.72 11.57 2.58 6.13 100.00 244.23 162.93 4188 83.05 15.28 0.53 1.15 100.00 162.98 121.64
povray 1.19 20520 86.92 7.39 1.49 4.20 100.00 408.33 146.34 9377 84.50 13.46 0.37 1.66 100.00 186.36 116.37
calculix 2.17 30343 70.48 17.75 2.89 8.88 100.00 132.78 141.24 32197 85.62 13.02 0.38 0.98 100.00 126.13 128.26
hmmer 0.33 6748 77.71 13.96 1.99 6.34 100.00 182.94 174.52 3061 75.11 22.64 0.65 1.60 100.00 468.53 129.85
sjeng 0.16 3473 83.01 10.14 1.79 5.07 100.00 444.13 177.02 683 84.77 12.74 0.15 2.34 100.00 134.78 123.32
GemsFDTD 0.58 9120 41.62 17.28 21.44 19.66 100.00 104.78 166.74 10345 93.23 6.54 0.04 0.18 100.00 111.64 132.30
libquantum 0.05 732 75.55 15.85 3.42 5.19 100.00 325.81 190.57 186 76.34 17.74 0.00 5.91 100.00 269.68 139.82
h264ref 0.58 9920 80.30 13.58 1.22 4.90 100.00 206.61 151.60 4981 81.87 15.42 0.80 1.91 100.00 178.89 122.04
tonto 6.21 48247 52.65 22.84 8.63 15.88 100.00 196.21 125.54 164788 90.05 9.09 0.15 0.71 100.00 192.72 141.53
lbm 0.02 106 67.92 17.92 3.77 10.38 100.00 103.80 193.33 111 93.69 6.31 0.00 0.00 100.00 110.13 148.74
omnetpp 0.79 9568 78.08 13.96 2.16 5.79 100.00 203.90 135.45 5020 74.12 18.57 3.01 4.30 100.00 144.81 117.53
astar 0.05 769 78.54 13.78 2.21 5.46 100.00 287.64 180.98 491 72.91 23.01 0.61 3.46 100.00 137.64 152.03
sphinx3 0.21 3500 79.20 12.17 2.03 6.60 100.00 196.27 170.99 1159 73.94 22.95 0.78 2.33 100.00 129.17 123.55
xalancbmk 5.99 81285 75.66 14.10 3.50 6.74 100.00 474.07 137.04 32761 79.51 17.61 0.43 2.45 100.00 130.16 111.38
#Total/Avg% 47.74 613619 72.79 13.95 3.73 9.48 99.94 210.81 157.43 636013 81.63 15.68 0.60 2.09 99.99 164.71 130.90
inkscape† 0.91 15.44 195731 97.83 1.31 0.86 0.00 100.00 – 130.40 105431 99.96 0.03 0.01 0.00 100.00 – 109.58
gimp 2.8.16 5.75 71321 71.75 18.69 2.49 7.08 100.00 – 135.74 15730 84.83 12.59 0.64 1.95 100.00 – 106.00
vim† 7.4 2.44 72221 99.18 0.23 0.60 0.00 100.00 – 173.31 13279 99.92 0.02 0.06 0.00 100.00 – 110.77
git 2.7.4 1.87 44441 80.06 11.91 2.14 5.88 100.00 – 169.16 9072 68.06 27.62 1.16 3.16 100.00 – 113.60
pdflatex 2.6 0.91 22105 82.05 10.46 2.06 5.42 100.00 – 168.72 6060 70.61 24.97 1.25 3.17 100.00 – 118.70
xterm 322 0.54 11593 79.12 12.45 3.04 5.39 100.00 – 166.23 2681 89.11 9.40 0.41 1.08 100.00 – 113.16
evince† 3.18.2 0.42 3636 99.59 0.30 0.11 0.00 100.00 – 131.63 716 99.86 0.00 0.14 0.00 100.00 – 107.86
make 4.1 0.21 4807 79.34 12.96 1.71 5.99 100.00 – 182.78 1383 74.98 20.46 0.94 3.62 100.00 – 125.48
libc.so 2.23 1.87 52393 81.19 11.55 2.23 5.03 100.00 – 247.67 24686 74.32 21.98 1.05 2.64 100.00 – 203.87
libc++.so 6.0.21 1.57 20593 75.14 13.02 4.60 7.24 100.00 – 184.99 15442 67.56 27.76 0.99 3.68 100.00 – 168.80
Chrome† 78.0 152.51 3800565 93.20 4.68 1.87 0.25 100.00 – 226.31 2624800 99.38 0.49 0.11 0.01 100.00 – 197.68
FireFox† 70.0 0.52 13971 98.02 0.54 1.44 0.00 100.00 – 269.22 7355 99.90 0.10 0.00 0.00 100.00 – 208.06
libxul.so 70.0 115.03 1463369 68.55 15.08 5.26 11.10 99.99 – 194.55 666109 75.72 20.61 0.62 3.06 100.00 – 174.22

E9Patch is a general binary rewriting tool that has many
potential applications, such as binary repair, instrumenta-
tion and hardening. Typically, binary repair will focus on a
few locations corresponding to bugs (e.g., see Example 3.1),
whereas instrumentation/hardening will need to modify mul-
tiple locations. For this evaluation we focus on instrumen-
tation as it is the more challenging application. Specifically,
we choose two test applications (A1/A2) that instrument:
1. A1: All jmp/jcc jump instructions; and
2. A2: All instructions that may write to heap pointers.

The former is a rough analogue for basic-block counting
which is a common benchmark for static binary rewriting
tools. However, since E9Patch does not have basic block
information by design, we instrument jump instructions in-
stead. The latter will be used for a hardening application
presented in Section 6.3. For these experiments, we use an
“empty” instrumentation that merely executes/emulates the
displaced instruction before returning control flow back to
the main program. This will demonstrate the baseline per-
formance of E9Patch’s patching methodology.
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The patching statistics are shown in Table 1. Here, we
instrument the (.text) section for each application. Column
(Size) is the binary size in MB, (#Loc) is the number of patch
locations, (Base%) is the percentage of successful patchings
using baseline methods (B1+B2), (T1/T2/T3%) is the percent-
age of successful patchings for each tactic, (Succ%) is the over-
all percentage of successful patchings (B1+B2+T1+T2+T3),
(Time%) is the overall runtime performance overhead, and
(Size%) is the overall output binary size over the original. For
the latter, the physical page grouping optimization (Section 4)
has been applied with a granularity ofM=1 (i.e., maximum
aggression). All experiments are run on a Xeon Silver 4114
Processor (2.20GHz with 32GB of RAM).
Coverage. Each patching tactic is not guaranteed to suc-
ceed, meaning that the coverage (i.e., the ratio of successfully
patched instructions) is a concern. Despite this, the Table 1
results show that E9Patch achieves very high coverage, and
can patch nearly every benchmark with a 100.00% score. In
total, E9Patch patches ∼1.05×107 instructions while only
1098 fail. The exceptions are discussed below.

Table 1 also shows the relative coverage breakdown for
each patching tactic T1-T3. Here, (Base%) represents the base-
line coverage if B1/B2 are used in isolation. In this case, only
72.79% of all jump instructions and 81.63% of all heap write
instructions will be patched. Each subsequent tactic, T1-T3,
improves the coverage, allowing for more instructions to be
successfully patched. Our results also highlight the impor-
tance of the neighbour eviction (T3) tactic. Without T3, the
overall coverage would be merely ∼90.5% (i.e., Base+T1+T2)
for A1 rather than ∼100%. This is because T3 by itself has
a high coverage, and can be used to patch instructions that
could not be handled by other tactics.
The Table 1 results also highlight a clear difference be-

tween PIE and non-PIE binaries. Since PIE binaries allow
trampolines to be placed in the negative address range, the
probability that any given patching tactic succeeds is much
higher. Even the baseline (Base%) for PIE binaries is >93%.
This result is important since PIE binaries are becoming in-
creasingly common in modern Linux distributions thanks to
the enhanced security benefits of address space randomiza-
tion (ASLR).
Despite the overall success, some benchmarks, such as

gamess and zeusmp, did not achieve 100% coverage. On
closer examination, both of these programs statically allo-
cate very large (.bss) sections. This limits the virtual address
space available for trampolines, making instruction patching
more difficult (see limitation (L1) from Section 5.2). Even
under these conditions, E9Patch can still patch >98.5% of
all instructions. Most of the other tested binaries (including
web browsers) do not make large static allocations, and are
therefore not affected by (L1). Finally, we note that E9Patch
can patch 100% of all instructions when gamess and zeusmp
are recompiled in PIE mode.
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Figure 4. Relative E9Patch runtime overheads of Chrome
and FireFox using the Dromaeo DOM browser benchmarks.

File Size. Each patched instruction makes use of a trampo-
line that must be incorporated into the output binary. Since
trampoline locations cannot be fully controlled, there is the
potential for high address space fragmentation and file size
bloat. With physical page grouping (Section 4) enabled, we
see that the overall file size is more manageable at +57.43%
for jump instructions (A1) and +30.90% for heapwrite instruc-
tions (A2). We also reran each benchmarks with physical
page grouping disabled, i.e., by using a naïve one-to-onemap-
ping between physical and virtual memory. In this case, the
average file size balloons to +2239.83%/+568.96% for A1/A2
respectively. This highlights the importance of physical mem-
ory optimization when large numbers of instructions need
to be patched.
Runtime Performance. To measure the performance, we run
each of the SPEC2006 benchmarks and compare the overhead
versus the original binary. We only measure the performance
for SPEC since other programs do not have standard bench-
marks. Furthermore, we will measure the performance for
web browsers separately. Overall, we see that E9Patch intro-
duces a +110.81% overhead for jump instructions (A1), and a
+64.71% overhead for heap write instructions (A2).

To maximize scalability, E9Patch avoids relocating binary
code and preserves the set of jump targets. In contrast, other
static binary rewriting tools aggressively relocate code, al-
lowing for patch/instrumentation code to be inlined rather
than jumping to/from trampolines. This approach generally
gives better performance assuming that the binary can be
rewritten correctly. For example, there is a +60.48% over-
head for Mulitverse [1] (empty instrumentation), a +62%
overhead for PEBIL [18] (basic block counting), and a ∼70%
overhead for DynInst [2] (basic block counting). Compared
to inlined instrumentation, our approach executes (at least)
two additional instructions (2× jmpq) which adds additional
overheads. The trade-off is a robust design that does not
need control flow information, allowing E9Patch to scale to
very large binaries.
Language Agnosticism. For the evaluation, we tested pro-
grams compiled from (combinations of) C, C++, Fortran and
(inlined) assembly. Because E9Patch is very low-level, it is
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Figure 5. SPEC2006 and web browser timings for heap writes (Table 1/Figure 4) and LowFat instrumentation.

also language agnostic by design, meaning that it is able
to instrument/patch programs compiled from a variety of
programming languages. In contrast, some existing binary
rewriting tools, such as PEBIL [18], incorporate compiler or
language-specific assumptions in order to implement control
flow recovery. Such assumptions may fail when applied to
binaries compiled from other languages.

6.2 Scalability: Chrome and FireFox
One of the core aims of E9Patch is to scale to very large bi-
naries. To evaluate scalability, we use E9Patch to instrument
web browsers such as Google Chrome [14] and FireFox [13].
Each browser has a binary size exceeding 100MB—an order of
magnitude larger than the largest SPEC benchmark (gamess).
We found that the Chrome (.text) section contains a mix-
ture of data and code, which proved to be a challenge for
our prototype linear disassembler frontend. To work around
the issue, we only disassemble after the ChromeMain symbol
(which still represents >97.5% of the .text section). FireFox
also arranges its binaries differently, with the bulk of the code
placed into a shared object (libxul.so), which is patched
using E9Patch. To measure the performance, we use the Dro-
maeo Document Object Model DOM browser benchmarks [9].
We choose these benchmarks to minimize the execution time
spent in Just-in-Time (JIT) compiled Javascript code. For this
experiment we instrument the heap write instructions appli-
cation (A2), and the instrumentation statistics are shown in
Table 1.

The results are shown in Figure 4. Overall, we see that
E9Patch introduces a ∼113% overhead for Chrome and a
∼46% for FireFox. These results are consistent with the per-
formance measurements for the SPEC benchmarks. FireFox
seems to be less sensitive to the E9Patch instrumentation
compared to Chrome, possibly because FireFox spends more
time in in JIT’ed code or in non-instrumented shared objects.
Regardless, our results show that E9Patch is able to scale to
very large binaries such as web browsers.

6.3 Application: Binary Heap Write Hardening
As a proof-of-concept demonstration application, we choose
to harden binaries against heap pointer spatial memory er-
rors (e.g., buffer overflows). We do not instrument reads,
since out-of-bound reads are not necessarily errors at the
binary level [4]. We instrument all pointer write instructions
excluding registers %rsp (stack) and %rip (globals). To de-
tect spatial memory errors, we use a variant of low fat point-
ers [10, 11]—a method for encoding bounds information (i.e.,
base+size) into the bit representation of the object pointer
itself. Low fat pointers can be used to enforce redzones by
ensuring that the property (p − base(p) ≥ 16) holds for all
pointer writes. Here, p is the written-to pointer, base(p) is
the low fat pointer operation that retrieves the object base
address [10], and 16 is the size of the redzone in bytes. Pointer
p is calculated by converting the patch location instruction
into an x86_64 load effective address (lea). Next, p is passed
to a redzone-check function that is called by each trampo-
line. Finally, the standard libc memory allocation functions
(malloc, calloc, etc.) are replaced by LD_PRELOAD’ing a low
fat runtime library (liblowfat.so) [20]. The library has
also been modified to insert redzones around each allocated
object.
The results are shown in Figure 5. Here we compare

against the empty instrumentation of Table 1. For the SPEC
benchmarks, the overall overhead increases from +64.71%
(A2) to +127.27% for heap write bounds checking. For the
browsers Chrome/FireFox, the overall overhead increases
from +113%/+46% to +170%/+60% respectively. Higher over-
heads are to be expected since bounds checking executes
more instructions. The overhead for source-level instrumen-
tation can be lower, sometimes as little as +13% [10]. How-
ever, source-level instrumentation can be inlined and opti-
mized by the compiler, something that is difficult to replicate
at the binary level. Furthermore, the source-level implemen-
tation of LowFat [20] only supports C/C++, whereas E9Patch
works at the binary level and does not assume source code
availablity.
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7 Related Work
We briefly review the related work and compare against
E9Patch. See [38] for a recent survey.
Static Rewriting Tools. Many different static binary rewrit-
ing systems and tools have been proposed. Some tools, such
as Vulcan [33], Alto [26], PittSFIeld [22], Google’s Native
Client [39], SASI [12], PEBIL [18], andDiablo [8], assume that
the input binary was produced by a specific/specialized com-
piler or that symbol/debug information has been preserved
(i.e., non-stripped). Unlike E9Patch, these tools do not work
on binaries that break these assumptions. Other static binary
rewriters, such as (static) DynInst [5], BIRD [28], and PSI [40],
attempt to relax these assumptions in exchange for better
compatibility. To do so, these tools typically implement some
combination of (1) signal handlers (e.g., SIGTRAP), (2) non-
punned jumps replacing one ormore instruction, or (3) global
binary rewriting that inlines instrumentation as necessary.
Signal handlers are generally too slow for most applications,
and the alternatives require control flow information in order
to safely rewrite the binary. Static control flow recovery re-
lies on assumptions/heuristics that are known not to scale [1].
Alternatively, control flow information can be recovered dy-
namically by the rewritten binary, e.g., by using the address
translation approach from PSI [40]. However, this requires
a global rewriting of all indirect jumps—including the en-
tire shared library dependency tree. In contrast, E9Patch
uses a local binary rewriting methodology that is applicable
to individual binaries, requires only partial disassembly in-
formation, and preserves the set of jump targets—thereby
eliminating the need for control flow recovery (of any kind).

Alternative tools such as SecondWrite [30] andMcSema [23]
attempt to lift binary code into the LLVM Intermediate Repre-
sentation [19] that can be recompiled into a new binary. Sim-
ilarly, tools such as Uroboros [35, 36] and RetroWrite [31]
attempt to disassemble binaries into a form amenable to
reassembly, possibly after modification. To work correctly,
these tools make several assumptions about the input binary,
such as assuming specific languages (e.g., C for Uroboros/-
RetroWrite) or position independent code (RetroWrite). In
contrast, E9Patch can statically rewrite binaries without
making such assumptions. Similarly, Mulitverse [1] also
aims to minimize assumptions by using a “brute force” disas-
sembly over all possible offsets. However, Mulitverse also
implements a global rewriting approach that inherits the
limitations described above, such as requiring that all shared
library dependencies be rewritten.
Dynamic Rewriting/Instrumentation Tools. An alternative to
static is dynamic rewriting, which patches binary code at
runtime as the program executes. Dynamic rewriting can be
scalable since dynamic analysis tends to be accurate whereas
static analysis tends to be approximate. While static rewrit-
ing can be done offline (rewrite once, execute many times),

dynamic rewriting is done online, and this can add addi-
tional runtime performance overheads. Pin [21] and Dy-
namoRIO [3] dynamically analyze and instrument programs
using a callbackmechanism. These tools use just-in-time (JIT)
recompilation of instrumented functions and basic blocks
“on-the-fly”. This requires a complex infrastructure, and the
program is JIT’ed rather run “natively”. As such, these tools
are generally too heavyweight for some applications such as
binary patching. The DynInst [5] framework also supports
dynamic instrumentation using a similar methodology to
that of the static case.
LiteInst [6] originally proposed instruction punning for

dynamic instrumentation rather than static binary rewrit-
ing. Like E9Patch, LiteInst uses alternative tactics should
instruction punning (B2) fail:
- Instrument a previous instruction; or
- Replace overlapping instructions with illegal opcodes.
The former requires control flow information in order to
ensure that the instrumentation is called (the previous in-
struction in memory is not necessarily the last executed),
and the latter requires control flow information to avoid
expensive signal handlers. Since E9Patch does not assume
control flow information, neither are appropriate for our
setting. Finally, since static rewriting is offline, E9Patch can
apply more aggressive optimizations such as physical page
grouping.

8 Conclusion
In this paper we presented E9Patch, a powerful and scalable
static binary rewriting tool. The key idea is to exclusively
use rewriting methodologies—such as instruction punning
and eviction—that can safely patch x86_64 instructions with-
out the need for (or knowledge of) control flow information
(jump targets, basic blocks, function boundaries, etc.). This
means that E9Patch can statically rewrite binaries without
the need for control flow recovery analysis and the corre-
sponding (fragile) assumptions/heuristics. As such, E9Patch
is very robust, and is able to scale to very large binaries (in-
cluding web browsers such as FireFox [13] and Chrome [14]),
all while maintaining reasonable performance and memory
overheads.
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