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ABSTRACT

API misuses can cause a range of issues in software development,
including program crashes, bugs, and vulnerabilities. Different ap-
proaches have been developed to automatically detect API misuses
by checking the program against usage rules extracted from exten-
sive codebase or API documents. However, these mined rules may
not be precise or complete, leading to high false positive/negative
rates. In this paper, we propose a novel solution to this problem by
representing the mined API usage rules as a probabilistic graphical
model, where each rule’s probability value represents its trustwor-
thiness of being correct. Our approach automatically constructs
probabilistic usage rules by mining codebase and documents, and
aggregating knowledge from different sources. Here, the usage
rules obtained from the codebase initialize the probabilistic model,
while the knowledge from the documents serves as a supplement
for adjusting and complementing the probabilities accordingly. We
evaluate our approach on the MuBench benchmark. Experimental
results show that our approach achieves 42.0% precision and 54.5%
recall, significantly outperforming state-of-the-art approaches.
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1 INTRODUCTION

The use of third-party libraries is extremely common in application
software development. Typically, these libraries offer various func-
tions through public Application Programming Interfaces (APIs)
that developers can use. However, using these APIs requires follow-
ing certain contracts, such as passing appropriate arguments, invok-
ing APIs in the correct order, and adhering to pre/post-conditions
of API calls. It is essential for a client application that depends on
a particular library to follow these API contracts. Unfortunately,
due to the complexity of API designs, inadequate documentation,
and insufficient training, developers may misuse APIs, leading to
program crashes, vulnerabilities, unexpected behaviors, and other
issues. API misuse is a primary cause of program bugs, with over
50% of more than one million bug-fix commits attributed to API
misuse [20]. Particularly, as software development increasingly re-
lies on third-party libraries, forming software supply chains [7],
detecting API misuse is vital to improving software quality.

Automatically detecting API misuses requires formal definitions
of correct API usage rules. However, the usage directives that de-
scribe the contracts, constraints, and guidelines for using APIs are
often provided in natural languages as a part of the API documents.
The ambiguous nature of these natural language descriptions poses
significant challenges to the automated detection of API misuse.

To tackle the aforementioned challenges, researchers have devel-
oped methods to automatically mine API usage rules from various
sources, such as API documents [24, 40], large codebase [42, 48, 53,
55], online forum, e.g., Stack Overflow [39, 45], or a combination of
these sources [23, 47]. Although these methods have shown promis-
ing results, they still have certain limitations. Firstly, while API
documents can accurately describe API usage rules, they are often
incomplete, loosely formatted, and diverse in writing styles, making
it challenging to infer complete and accurate rules [2, 41]. Secondly,
mining rules by analyzing frequent API usages from codebase is
limited by the availability of high-quality API usages. Moreover,
the concrete API usages in codebase and online forums may not
always be reliable, i.e., frequent API usages are not guaranteed to
be correct. In fact, Zhang et al. [54] have shown that 31% of posts
on Stack Overflow have potential API usage violations. Thirdly,
while combining rules from codebase and API documents increases
the accuracy of mined API usage rules [23, 47], their performance
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is still far from being satisfactory, with state-of-the-art techniques
achieving only 36.3% precision and 47% recall [47].

The impreciseness and incompleteness of API usage rules mined
from different sources is the main reason causing low detection
accuracy. For instance, before popping up an element from Java
Stack, according to JavaDoc, users need to check !stack.empty(),
while the mined rule from codebase may check stack.size()>0
or even no check (which may not be wrong, as a certain stack may
never be empty). The usage rules mined from neither codebase nor
documents are considered precise and complete, and they may even
conflict with each other. How to extract valuable knowledge from
imprecise and incomplete sources has not been fully investigated.

To address this issue, our key idea is to utilize a probabilistic
model to quantify the trustworthiness of a mined rule. The higher
the probability assigned to a rule, the more likely it is to be correct.
With this approach, we can aggregate the API usage rules extracted
from different sources by computing multi-source probabilities.
For instance, in the example mentioned earlier, we can determine
that verifying !stack.empty() before popping elements is not
mandatory. Instead, there is a certain probability that the pop()
operation is guarded by stack.size()>0, or there is even no check.
By assessing API misuse in this manner, we can report detected
API misuses according to trustworthiness of corresponding rule,
thereby reducing the number of false positives/negatives.

In this paper, we present a formalization of probabilistic API
usage rules utilizing a probabilistic graphical model, specifically
Bayesian Network [13]. The Bayesian Network is used to repre-
sent the conditional dependencies among a set of nodes through
a directed acyclic graph (DAG). In our context, the nodes in the
DAG represent API invocations, predicates or data entities, while
the edges denote the conditional dependencies between nodes. For
instance, the conditional dependency between two method invo-
cation nodes𝑚𝑎

𝑝
−→ 𝑚𝑏 means that “after invoking API𝑚𝑎 , API

𝑚𝑏 needs to be invoked with a probability 𝑝”. We formalize this
approach and build a probabilistic graphical API usage model based
on the codebase and documents. Specifically, we determine the
prior probability between different nodes based on the frequency
of concrete API usage in the large codebase. Additionally, we ag-
gregate the API usage rules extracted from the documents into
the probabilistic model. We then use the constructed probabilistic
model for API misuse detection. For a given API invocation, we
calculate the posterior probabilities of whether another API should
be first invoked, whether a certain argument should be verified, or
whether the return value should be validated.

To realize this idea, we implement a tool called GraphiMuse
(GraphicalModel based APIMisuse Detection) for learning the
probabilistic API usage rules and detecting API misuses. Similar to
existing work [42], GraphiMuse encodes concrete API usages as
API-Usage Graphs (AUGs), a comprehensive usage representation
that captures different types of API usage rules. Then, it employs a
frequent subgraph-mining algorithm to mine rules and initialize
probabilities, a large language model (LLM) enhanced algorithm
for interpreting API documents, and a graph-matching strategy to
identify rule violations. GraphiMuse reports misuses with a confi-
dence score, indicating the confidence level of GraphiMuse on the
detection results. GraphiMuse is then evaluated on MuBench [3], a

widely used benchmark for detecting Java API misuses. Evaluation
results show that GraphiMuse achieves 42.0% precision and 54.5%
recall, significantly outperforming state-of-the-art approaches.

The contributions of this paper are summarized as follows:
• We present a novel idea to represent API usage rules using a
probabilistic graphical model, where the probability indicates the
trustworthiness of mined API usage rules.
• We propose an approach to constructing the probabilistic API
usage rules bymining the codebase and documents, and a strategy
to aggregate the knowledge from different sources.
• We implement a tool called GraphiMuse, and evaluation on
MuBench shows GraphiMuse outperforms existing techniques.
• We make our implementation open-source available at https:
//github.com/18373637myl/GraphiMuse.

2 BACKGROUND

Before presenting the technical details, let us first provide some
background on Bayesian network and API misuse detection.

2.1 Bayesian Network

A Bayesian network [13] is a probabilistic graphical model that
depicts the conditional dependencies among a group of variables
via a directed acyclic graph. In a Bayesian network, the nodes rep-
resent variables in the Bayesian sense: they may be observable
quantities, latent variables, or hypotheses. Edges represent con-
ditional dependencies, while nodes that are connected indicate
conditional dependence between variables, otherwise, two nodes
are independent. Formally, given a set of nodes 𝑥1, 𝑥2, . . . , 𝑥𝑛 , the
joint probability satisfies

𝑃 [𝑥1, 𝑥2, . . . 𝑥𝑛] =
𝑛∏
𝑖=1

𝑃 [𝑥𝑖 |pa(𝑥𝑖 )]

where pa(𝑥𝑖 ) is the set of parents of node 𝑥𝑖 . In other words, the
joint distribution factors into a product of conditional distributions.
With the joint distribution, the model can answer questions about
the presence of a cause (e.g., 𝑥 𝑗 ) given the presence of an effect
(e.g., 𝑥𝑖 ). This refers to the conditional probability of node 𝑥 𝑗 given
that node 𝑥𝑖 takes on a specific value. To compute this conditional
probability, we can use Bayes’ rule, which states that

𝑃 (𝑥 𝑗 |𝑥𝑖 ) =
𝑃 (𝑥𝑖 , 𝑥 𝑗 )
𝑃 (𝑥𝑖 )

Here, 𝑃 (𝑥𝑖 , 𝑥 𝑗 ) is the joint probability of 𝑥𝑖 and 𝑥 𝑗 , and 𝑃 (𝑥𝑖 ) is the
marginal probability of 𝑥𝑖 .

2.2 API Misuse Detection

Existing methods detect API misuse by statically checking the code
against API usage rules mined from codebase or documents.

Mining API usage rules from codebase. To mine API usage
rules from the codebase, the prevalent approach in the field is the
frequent itemset mining technology [30, 38]. This is based on a
simple assumption that the frequently used patterns are correct.
This approach typically begins by obtaining high-quality source
code datasets from the codebase. The source code is then prepro-
cessed using various techniques, including control flow analysis,
data flow analysis, and abstract syntax tree generation, which aims
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to transform the source code into a more standardized representa-
tion. For instance, MuDetect [42] transforms programs into AUG,
a graph specifically designed for API usage. Subsequently, frequent
itemset mining algorithms such as the Apriori algorithm [37] are
applied to mine API usage rules from standardized representations.
Although existing approaches have achieved promising results [42],
false positives and negatives are still prevalent.

Mining API usage rules from API documents.Mining API
documents is typically achieved through document crawling, di-
rective sentence identification, and rule extraction. The API docu-
ments are usually crawled from official library websites. Within the
crawled documents, only a portion of the sentences contains direc-
tive information, which includes constraints and guidelines about
API usage. Directive sentences can be identified either through reg-
ular expression matching [28] (example keywords include ‘must’,
‘require’, ‘should’, etc.) or learning-based classification [24, 40].
Once the directive sentences are identified, API usage rules can be
extracted through the following steps:
(1) recognizing name entities (such as API calls and predicates)

embedded within sentences (e.g., “if there are no more tokens
in this tokenizer’s string” of nextToken is a predicate);

(2) matching recognized entities with real program elements (e.g.
parameter, method, value literal). For instance, the above predi-
cate can bematched to hasMoreTokens because its functionality
description “Tests if there are more tokens available from this
tokenizer’s string” is highly similar to the predicate entity.

(3) identifying the types of rule by utilizing keyword analysis, e.g.,
by analyzing the directive sentence “if neither next nor previous
have been called” of ListIterator.set(), the rule is inferred
as a call order relation according to keywords ‘have been called’.

The above workflow may result in false positives, since it fails to
take into account the abundant semantic information encapsulated
in the API description statements.

3 MOTIVATION

Mining API usage rules from codebase or documents seems straight-
forward, but it is based on the simplistic assumption that the rules
derived from frequent API usage or documents are necessarily cor-
rect. However, just because an API is frequently used in a particular
way, it does not guarantee this API usage is correct [42]. Usage rules
in large codebase are often influenced by individual developers’
coding preferences, which may not align with the best practices.
In contrast, constraints extracted from documents tend to be over-
simplified. The knowledge gap between usage caveats and correct
usage rules makes it challenging to guarantee the accuracy of mined
rules [25, 40]. In this section, we present several mined API usage
rules and demonstrate the limitations of existing techniques.

3.1 Imprecise Usage Rules

Figure 1a shows an API usage rule mined by MuDetect [42] from
the Jodatime project, which is a library that provides support for
dates, times, time zones, durations, intervals, and partials. The
rule is about the usage of the DateMidnight class. This rule re-
quires that (1) subrule-1: a DateMidnight object is defined via
DateMidnight.initand (3) subrule-2: after creating a DateMidnight
object, monthOfYear() method must be invoked.

order

DateMidnight.init<>

DateMidnight

def

DateMidnight.monthOfYear()

recv

(a) An imprecise rule

String

Collection.add()

order

Collection.contains()

para

Collection

recv

para

recv

(b) An incomplete rule

Figure 1: API usage rule examples mined from (a) Apache

Jodatime [14] and (b) Testng [6]

However, the API usage rule mentioned above is not entirely cor-
rect. The subrule-1 regarding the process of creating an object is ac-
curate. But, subrule-2 is wrong since the monthOfYear()method is
not necessarily called after the creation of the object. This error hap-
pens because calling monthOfYear() after DateMidnight.init
has reached a pre-defined frequency threshold. As a result, any
DateMidnight object that not calls monthOfYear()will be marked
as API misuse, which is apparently incorrect.

Representing usage rules as probabilistic models can effectively
address these issues. Although the frequency of monthOfYear()
surpasses the frequency threshold, it is still significantly lower
compared to the frequency of DateMidnight.init. It is necessary
to create a DateMidnight object before invoking monthOfYear(),
however, after the creation of the DateMidnight object, other meth-
ods instead of monthOfYear() may be called. Specifically, in the
Jodatime project, invoking monthOfYear()method occurs 27 times,
whereas DateMidnight.init method occurs 274 times. Based on
this observation, we establish a lower dependency probability be-
tween DateMidnight.init and monthOfYear(). This reduces the
number of false positives caused by the absence of monthOfYear()
method and increases detection accuracy.

Additionally, mining API usage rules from documents can also
be error-prone. Natural language can be highly ambiguous, partic-
ularly in API reference documents which include complex logical
relations and conditions. For instance, the orElseThrow() function
from the java.util.Optional class contains a directive sentence
“throws X - if there is no value present”, where X is the exception
defined by the developer. Developers may use the customized ex-
ception X to implement certain functionalities by catching and
handling X in an intended way. Therefore, it is unclear whether ex-
ception X should be triggered on purpose or prevented from being
triggered. Based on this directive sentence, existing tool [40] simply
extract rule ‘[isPresent(), if true, orElseThrow()]’ to prevent
triggering X. By referring to the large codebase, however, this us-
age rule is hardly used by developers, making it highly improbable.
By utilizing a probabilistic model, we can ignore this constraint,
thereby reducing the possibility of generating false positives.

3.2 Incomplete Knowledge Coverage

Apart from being incorrect, the mined rule may be overly simplistic
and miss the necessary dependencies among API elements. For
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example, the document of function RandomAccessFileOrArray()
from itextpdf.text, includes only one directive sentence “This
method throws IOException”, which means IOException should
be caught. However, one should also call method close() to close
the RandomAccessFileOrArray object to prevent resource leak-
age. However, closing this object as a postcondition has not been
mentioned in the document, resulting in the incomplete rule. Fortu-
nately, the above constraint is a frequently used rule in the codebase.
RandomAccessFileOrArray() and close() are used together for
18 times. With this information, we can infer a more complete rule.

Similarly, rules mined from a codebase may be incomplete, par-
ticularly in handling API parameters. Object-oriented programming
languages like Java are empowered with inheritance and polymor-
phism, which may not be fully reflected in the concrete API usages
within the codebase. Figure 1b illustrates a rule where the method
Collection.contains() is expected to receive an argument of
type Object and also check whether the object is null. However,
as shown in this rule, it requires a String as a parameter, and the
process of checking the input parameter for null is not reflected.
To address this issue, we noticed that the Javadoc provides a clear
description of Collection.contains(), which includes not only
the expected parameter type but also covers the requirement to
check whether the input Object is null. This effectively addresses
the problem of incomplete information mined from the codebase,
particularly concerning API parameter handling.

4 METHODOLOGY

In this section, we present the definition of probabilistic API usage
rules, describe the detailed approach for constructing the proba-
bilistic model, and demonstrate how to detect API misuse.

Figure 2 shows the overall workflow of the proposed technique.
Specifically, GraphiMuse first mines rules from the codebase by
encoding the program into API usage graphs (AUGs) [42] and ex-
tracting API usage rules based on frequency obtained from the
AUGs. Then, the tool employs an open information retrieval tech-
nique to extract API constraints from documents. The knowledge
mined from both the codebase and documents is then aggregated
to construct a probabilistic usage model. Here, the usage rules ob-
tained from the codebase initialize the probabilistic model, while the
constraints from the documents serve as a supplement for adjusting
the probabilities accordingly. Based on the learned probabilistic
rules, GraphiMuse performs misuse detection and reports poten-
tial misuses to developers with a confidence score, indicating its
confidence level on the detection results.

4.1 Probabilistic API Usage Rules

As we mentioned above, the probabilistic API usage rules could be
represented as a Bayesian network. Formally, the probabilistic API
usage rules are defined as follows:

Definition 4.1 (Probabilistic API usage rule). A rule is defined as
a graph 𝑅 = (𝑁, 𝐸, 𝑃𝑟 ), which is a set of nodes 𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑛}
together with a set of edges 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚} that connect pairs
of nodes. Each node 𝑛 is associated with a function 𝑝𝑟𝑛 : 𝑁 ′ →
probability, where 𝑝𝑟𝑛 ∈ 𝑃𝑟 and 𝑁 ′ is the set of parent nodes of
𝑛, representing the probability of 𝑛 appears based to the occurrence
of 𝑁 ′.

In our context, node 𝑛𝑖 represents data entities, such as variables
or literals, or actions such as method invocations, predicates, or
catch blocks, while edges represent control and data flow between
data entities and actions. Two conditional dependent nodes (𝑛𝑠 , 𝑛𝑡 )
means 𝑛𝑠 should appear before 𝑛𝑡 in a correct API usage with a cer-
tain probability. The function 𝑝𝑟𝑛 takes 𝑛’s parent nodes as inputs
and calculates the joint conditional probability of 𝑛. For example,
Figure 3 presents the probabilistic API usage rule derived from
Apache httpclient project. In this rule, the node set 𝑁 consists of
four nodes, with two representing actions: one is the API invocation
node Integer.parseInt(), and the other is the <catch> node, rep-
resenting the code block for exception handling. The remaining two
nodes are data nodes, one being a common class String, and the
other an exception node representing NumberFormatException.
The edge set 𝐸 consists of four edges, where the order edge de-
notes the order relationship between action nodes, the para edge
represents the relationship between action nodes and parameter
nodes, and the throw edge signifies the relationship between ac-
tion nodes and exception nodes. The joint conditional probabilities
indicate the probability of a specific node based on the presence
of its parent nodes. The top-left part of Figure 3 shows the joint
probability of node Integer.parseInt(), while the bottom-right
part shows that of node <catch>. As an example, the probability of
<catch> occurring is 0.46 if the node Integer.parseInt() exists
and an NumberFormatException object is not created (third row
of the right matrix). This indicates that in 46% of cases, after invok-
ing Integer.parseInt(), despite encountering an exception, the
thrown exception is not an NumberFormatException.

4.2 Initializing Probabilistic Rules via Codebase

Mining

We first present the details of mining API usage rules from the
codebase and initialize the probabilistic graphical model.

4.2.1 Mining probabilistic API usage rules from codebase. Just as
existing work, e.g., MuDetect [42], GraphiMuse also first applies
pre-processing to encode the program as a set of API usage graphs
(AUGs). Then, it extracts frequent AUGs as the ingredients for
initializing the probabilistic API usage rules. Algorithm 1 presents
the algorithm for mining probabilistic rules from the codebase,
which takes a set of AUGs as inputs and produces a set of frequent
AUGs as rules. Given a set of AUGs, the algorithm first extracts the
set of API call nodes whose frequencies are greater than threshold 𝜏
(line 2). The node 𝑛’s frequency freq(𝑛) is defined as the number of
occurrences of 𝑛 in the codebase, and the default value of 𝜏 is set as
10 (following the setting of MuDetect [42]). For each API call node,
GraphiMuse first creates an initial rule (line 6), and recursively
extends it by expanding their incoming and outgoing edges (lines 10-
16). Similarly,GraphiMuse only considers the edges with frequency
of ≥ 𝜏 . This process ends until there are no incoming or outgoing
edges to expand (line 18). On top of the general workflow, we further
designed three heuristic strategies to increase the rule accuracy.

• Generalize nodes. The nodes and edges in the API usage rules
may be too specific, which limits their applicability to a wide range
of API usage. To address this issue, we propose a node abstraction
approach that is reflected in the expandable node selection at line 11
in Algorithm 1. During the recursive mining process, expandable
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Algorithm 1: Codebase Mining Algorithm
Input: A set of AUGs: 𝐴𝑈𝐺𝑠; Frequency threshold: 𝜏 ;
Output: A set of probabilistic Rules: 𝑅;

1 def mine(AUGs, 𝜏):
2 N

apicall
← {𝑛 | 𝑛 ∈ nodeSet(𝐴𝑈𝐺𝑠) ∧

3 isAPICall(𝑛) ∧ freq(𝑛) ≥ 𝜏};
4 Rules← ∅;
5 foreach 𝑛 ∈ N

apicall
do

6 𝑟 ← 𝑛𝑒𝑤 𝑅𝑢𝑙𝑒 (𝑛);
7 Rules← Rules ∪ extend(𝑛, 𝑟, 𝜏, 𝐴𝑈𝐺𝑠);
8 return generateProbabiliticModel(Rules);

9 def extend(n, r, 𝜏 , AUGs):
10 R← ∅;
11 𝑁𝑒 ← {𝑛′ | 𝑒 ∈ edgeSet(𝐴𝑈𝐺𝑠) ∧ freq(𝑒) ≥ 𝜏 ∧
12 (𝑒 = 𝑛 → 𝑛′ ∨ 𝑒 = 𝑛′ → 𝑛)};
13 if 𝑁𝑒 ≠ ∅ then
14 for 𝑛𝑒 ∈ 𝑁𝑒 do

15 𝑟𝑖 = extension(𝑟, 𝑛𝑒 );
16 𝑅 = 𝑅 ∪ extend(𝑛𝑒 , 𝑟𝑖 , 𝜏, 𝐴𝑈𝐺𝑠) ;

17 else

18 𝑅 ← 𝑅 ∪ {𝑟 };
19 return 𝑅;

nodes are calculated by referring to the edges connected to node 𝑛.
In each step, there could be multiple but conflicting choices of ex-
pandable nodes. For example, when expanding the group()method
invocation (from class java.util.regex.Matcher), there are two
choices: find()→ group() or matches()→ group(), and both

of them exceed the given threshold 𝜏 . Keeping both expanding
options will result in many false positives, because rule find()
→ group() will report usage “matches(); group()” as a misuse
since it does not invoke find() before group(), which is clearly a
false positive. If only one of them is kept, similarly, the kept rule
will also cause false positives. To solve this problem, GraphiMuse
abstracts specific nodes into an abstracted form. In the above exam-
ple, GraphiMuse treats [find() ∨ matches()]→ group() as the
correct rule, which can significantly improve the tool’s precision.

• Remove redundant information. Many nodes that are irrelevant
to API usage rules can also affect GraphiMuse’s accuracy. We have
removed certain nodes, including the 𝑟𝑒𝑡𝑢𝑟𝑛 node and nodes related
to exception handling.

• Merging similar rules. When two rules contain overlapping
sections, it usually suggests that one of them is flawed or neither
of them is correct. To tackle this problem, we implemented a mech-
anism that utilize logical operations to cluster rules based on their
relationships. For instance, if rule1 and rule2 are considerably
similar, they can be grouped as one rule by integrating them with
logical operators like rule1 or/and rule2. The method for assess-
ing the similarity of rules involves counting the common nodes
between two rules and calculating the proportion of these common
nodes relative to both rules, based on different weights assigned
to action nodes and data nodes. The decision to merge two rules is
made by determining whether the similarity reaches a predefined
threshold. For instance, if the different nodes connected to the same
API represent two types of parameters, we infer that the two rules
might have a relationship of API rewriting, and thus we employ the
or operator to merge them. Merging similar rules could enhance
the flexibility and precision of rules.

4.2.2 Generating probabilistic model. After generating API usage
rules, Algorithm 2 demonstrates how to convert them into proba-
bilistic graphical models. For each rule in the input set,GraphiMuse
iterates over all its nodes in the topologic order. For each non-root
API call node 𝑛, all its parent nodes 𝑁 ′ are first identified by refer-
ring to its incoming edges from the rule (line 7). Next, the influence
of parent nodes on the child node is then calculated at lines 6 to
12. Specifically, the impact of 𝑁 ′ on 𝑛 can be represented as the
probability that 𝑛 exists under the existence of each node in 𝑁 ′.
There are 2ˆ |𝑁 ′ | possible combinations of parent nodes, with each
combination representing whether certain parent nodes exist or
not. To generate each combination, the algorithm uses a loop that
iterates over all possible integers from 0 to 2ˆ |𝑁 ′ | - 1. For each
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Algorithm 2: Probabilistic Model Generation Algorithm
Input: Aggregated line feature
Output:

1 def generateProbabiliticModel(R):
2 foreach r ∈ R do

3 foreach n : TopoSort(nodeSet(𝑟 )) do
4 if !isAPICall(𝑛) ∨ isRootNode(𝑛) then
5 continue;
6 DepDegree← { };
7 𝑁 ′ ← {𝑛′ | (𝑛′ → 𝑛) ∈ edgeSet(𝑟 )};
8 for 𝑖 from 0 to (2ˆ |𝑁 ′ | − 1) do
9 combination = binaryRepresentation(𝑖);

10 𝑁 ′
𝑖
← mask(𝑁 ′, combination);

11 DepDegree[𝑖] ← freq(𝑛, 𝑁 ′𝑖 )
freq(𝑁 ′

𝑖
) ;

12 𝑛 = 𝑛 ~DepDegree;

13 return R;

integer 𝑖 in the loop, the algorithm generates a binary representa-
tion of 𝑖 , which is a string of 0s and 1s of the same length as 𝑁 ′.
For example, if 𝑁 ′ has length 3 and 𝑖 is 5, the binary representa-
tion of 𝑖 will be “101”. The binary representation is then used to
create a certain combination of parent nodes by applying a mask
to 𝑁 ′, where each node exists if the corresponding binary digit is
1, and does not exist if it is 0. For each combination, GraphiMuse
calculates the dependency degree between node 𝑛 and its par-
ent nodes 𝑁 ′

𝑖
by calculating freq(𝑁 ′𝑖 ,𝑛)

freq(𝑁 ′
𝑖
) . To calculate freq(𝑁 ′

𝑖
, 𝑛),

GraphiMuse tracks where 𝑛 originated from and counts the fre-
quencies of their parents and𝑛. Conceptually, this formulameasures
the probability of 𝑃𝑟 (𝑛, 𝑛′1, 𝑛

′
2 . . . )/𝑃𝑟 (𝑛

′
1, 𝑛
′
2 . . . ), where 𝑛

′
1, 𝑛
′
2 . . .

are set of parent nodes of 𝑛. Let us revisit the example shown in
Figure 3. For this example, the DepDegree[1] of node <catch> is
𝑃𝑟 (< catch >, InterruptedException, Thread.sleep()) /
𝑃𝑟 (InterruptedException, Thread.sleep()), where 𝑛 indicates
node 𝑛 does not exist. The produced value of this formula in this
case is 0.26. Each node is associated with a DepDegreematrix, which
represents its dependency degree on its parent nodes. The DepDe-
gree will be used in the following misuse detection process.

4.3 Adjusting Probabilistic Rules via Document

Mining

In this section, we explain our approach to mine rules from API
reference documents and then adjust the probabilistic model.

4.3.1 Mining API usage rules from documents. To mine rules from
documents, we develop an open information retrieval technique
to automatically build API usage rules. Given an API document as
input, our approach mainly follows the workflow explained in Sec-
tion 2 to construct usage rules. Differently, to improve the accuracy
and completeness of the constructed usage rules, we further design
the following three strategies.

• Construct declaration graph. Object-oriented programming lan-
guages, such as Java, possess intricate inheritance and polymor-
phism features, which have been extensively studied in code analy-
sis. However, when processing documents, previous research has

overlooked the inheritance relationships between classes. In some
cases, API usage rules may only be specified by the superclass,
leaving out descriptions in subclasses. The absence of knowledge
about these inheritance relationships makes it challenging to infer
accurate and comprehensive API usage constraints. To mitigate
this issue, GraphiMuse constructs an API declaration graph that
records the complex relationships between various classes and APIs.
When building API usage rules, it refers to the document of the cur-
rent class and also its superclasses. By utilizing declaration graphs,
GraphiMuse can create more precise and complete API usage rules.

• Extract parameter constraints with LLM. Parameter constraint
denotes a condition that solely pertains to the parameters within a
single method. For example, StringBuffer.insert(int offset)
method has description: "The offset argument must be greater than or

equal to 0", from which GraphiMuse can extract a parameter con-
straint: [offset,>=,0]. Existing approaches extract such constraints
using linguistic patterns. However, parameters and constraints in
directive sentences are expressed in various forms, such as “offset
is not negative”, “offset >= 0”, or “offset is greater than or equals
to zero”, which makes it difficult to support all kinds of patterns.
To solve the problem, we implement an approach to extract pa-
rameter constraints by leveraging the state-of-the-art pre-trained
large language model (LLM), ChatGPT, which has shown a strong
ability to comprehend diverse and complex descriptions. To obtain
constraints using the ChatGPT, we input the system message “I
want you to act as an API knowledge miner” and prompt to instruct
ChatGPT for mining constraints from the documents and provide
examples of mining examples manually annotated by us. Then we
continuously ask ChatGPT to generate mining results. If the result
is correct, we will make it “think step by step”, which is considered
to be useful in improving the reliability of LLM [50]. Otherwise, we
offer feedback against the error and query ChatGPT to regenerate
the result excluding previous fault information. Through multiple
iterations, ChatGPT can extract the constraints automatically using
its advanced language model capabilities.

• Extract intra-method constraints with LLM. As discussed in Sec-
tion 2, matching entities with concrete API is key for constraint
generation. However, relying solely on text similarity between an
entity and an API description may lead to imprecise matches. For
instance, the method Scanner.hasNextLine() has a directive sen-
tence “throws IllegalStateException, if this scanner is closed”. Current
approaches match the entity “this scanner is closed” with the method
close() because its functionality description "Closes this scanner"
has high textual similarity with this entity. However, this is an
incorrect matching since method close() directly closes a scanner
instead of checking whether it is closed or not. To address this issue,
we also leverage ChatGPT to generate more precise constraints. By
feeding ChatGPT a snippet of the method function and the direc-
tive description, it can output constraints as a triple with higher
accuracy. With the help of ChatGPT, GraphiMuse significantly
reduces the number of false positive matches.

4.3.2 Integrating document rules into probabilistic model. The API
usage rules mined from the documents will be then integrated into
the probabilistic model obtained from Section 4.2. The integration
is conducted in the following two ways.
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Figure 4: An example of codebase and document integration

• Integrating new rules from documents. As discussed in Sec-
tion 3.2, the rules obtained from either the codebase or documents
can be incomplete. While the rules mined from the codebase typi-
cally capture the relative positional relationships between different
nodes, they may miss important logical relationships, particularly
in relation to parameter usage rules. In contrast, the rules obtained
from documents often exhibit higher accuracy and stronger logi-
cal relationships. They explicitly specify the causal relationships
between API invocations and provide clear guidelines for parame-
ter usage. Therefore, GraphiMuse incorporates the rules from the
documents into the probabilistic model by adding extra nodes. By
doing so, GraphiMuse can leverage the strengths of both sources
to create a more accurate and comprehensive model.

Figure 4 illustrates an example of integration. The left graph
depicts codebase-mined rules, while the rule extracted from docu-
ments of Collection.contains()1 is [param_1; !=; null]. Both of
them focus on the API Collection.contains(). The information
from the documents emphasizes the need to check whether the first
parameter of Collection.contains(obj) is null, which is not
reflected in the graph. Additionally, the documents define the pa-
rameter of contains() as Object, while the graph accepts a String
as an argument. Therefore, GraphiMuse makes modifications by
changing the parameter type from String to Object, and inserts a
nullcheck node into the graph. The right part of Figure 4 shows
the final API usage rule after the adjustment. GraphiMuse assigns
the biggest probability for newly added or modified nodes, as the
information from the documents is more reliable. For example,
Pr(nullcheck | contains()) will be assigned a value of 1, indi-
cating that a nullcheck is mandatory before calling contains().

• Adjusting the value of probabilities. As the document informa-
tion is considered more reliable, the purpose of adjusting the prob-
ability model is to reflect the high accuracy of the rules extracted
from documents. To achieve this, GraphiMuse increases the depen-
dency strength between corresponding nodes in the rules mined
from the documents. To illustrate this adjustment, let us revisit the
example shown in Figure 3. From the documents, GraphiMuse
mines the following rule: [hasNext(), pred, next()], which high-
lights that hasNext() is a prerequisite for next(). In such cases,
GraphiMuse decreases the probabilities of hasNext() being false
and next() being true by a predefined degree A, while ensuring

1docs.oracle.com/javase/8/docs/api/java/util/Collection.html

the probability after adjustment remains valid. At the same time,
it increases the probabilities of both hasNext() and next() being
true byA. This adjustment aims to emphasize the scenarios where
a missing hasNext() node is more likely to be misuse.

4.4 Detecting API Misuse via Probabilistic

Model

The previous subsections describe how GraphiMuse extracts API
usage rules from large codebase and documents, and construct prob-
abilistic models. This subsection describes how GraphiMuse uti-
lizes these models for detecting API misuse. The detection method
consists of three parts: graph matching, confidence score calculation
based probability, and API misuse report.

4.4.1 Graph matching. Given a target program, GraphiMuse first
transforms it into a series of AUGs denoted as𝑇AUG . Following this,
for each target AUG 𝑡AUG ∈ TAUG , GraphiMuse performs graph
matching between tAUG and each rule constructed in the previous
subsections. The matching process starts with identifying common
API call nodes shared between tAUG and rule. If any common API
call node(s) exist and tAUG lacks some nodes defined in rule, the
pair <tAUG , rule> is considered a potential API misuse candidate.

4.4.2 Confidence score calculation. Since the API usage rule may
not always be accurate, leading to possible false positives. There-
fore,GraphiMuse evaluates each candidate’s confidence score with
a probabilistic model. For every misuse candidate <tAUG , rule>, the
confidence score is defined as the probability of it being a true posi-
tive. To accomplish this,GraphiMuse utilizes the probability model
to convert the accuracy of rules into a confidence score. Specifi-
cally, suppose the node set of rule is 𝑁=𝑛1, 𝑛2, . . . , the API call
node with tAUG is 𝑛𝑖 , and the missing nodes in tAUG is 𝑁𝑚 , where
𝑁𝑚 ⊂ 𝑁 ∧ 𝑛𝑖 ∉ 𝑁𝑚 . For instance, for the rule shown in Figure 3
and a given API usage Usagesleep Thread.sleep()without catch
and InterruptedException, 𝑛𝑖 would be Thread.sleep(), 𝑁 in-
cludes the three nodes in Figure 3, 𝑁𝑚 are the missing catch and
InterruptedException nodes. The possibility of <tAUG , rule> be-
ing a true positive is calculated as the possibility of Pr(𝑁𝑚, 𝑁 −𝑁𝑚)
being a correct API usage rule, i.e., the possibility that all the
node from 𝑁𝑚 does not appear while all the nodes from 𝑁 − 𝑁𝑚

existing. This means that missing 𝑁𝑚 will not lead to misuse.
Hence, for API call 𝑛𝑖 , the confidence score of <tAUG , rule> is
calculated as Pr((𝑁𝑚, 𝑁 − 𝑁𝑚) | 𝑛𝑖 ). The probabilistic model is
constructed in Algorithm 2, where all the prior probabilities over 𝑛𝑖
(e.g., Pr(𝑛𝑖 | 𝑛1, 𝑛2 . . . 𝑛 𝑗 )) have been calculated. According to Bayes’
theorem and Bayesian Network, GraphiMuse can easily calculate
the posterior probability of Pr((𝑁𝑚, 𝑁 − 𝑁𝑚) | 𝑛𝑖 ). For the above
example, the possibility of usage Usagesleep being correct would
be Pr((catch, InterruptedException) | Thread.sleep()), which
is very low according to the probabilistic model from Figure 3.

4.4.3 API misuse report. Using the confidence score, GraphiMuse
could filter out the detected API misuses with a low confidence
score, i.e., ignoring the less trustable detection results.GraphiMuse
allows the user to set the threshold 𝜃 to filter out the misuses whose
confidence score is less than 𝜃 . This strategy enables retaining a lim-
ited number of results, allowing users to focus on the more trustable

docs.oracle.com/javase/8/docs/api/java/util/Collection.html
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results. Moreover, based on the confidence score, GraphiMuse can
also rank the detection results to prioritize detected misuses that
are likely to be true positives. Depending on the user’s preference,
GraphiMuse reports the top 𝑁 misuses to users.

5 IMPLEMENTATION AND EVALUATION

In this section, we aim to evaluate GraphiMuse and answer the
following research questions:
• RQ1: Compared to state-of-the-art approaches, how effective is
GraphiMuse in detecting API misuses?
• RQ2: What is the impact of hyperparameters on the API misuse
detection precision?
• RQ3:What are contributions of each component toGraphiMuse’s
effectiveness?

5.1 Implementation

We implement GraphiMuse on top of MuDetect [42]. Our exten-
sion overMuDetect utilizes approximately 6,000 lines of Java code
and around 1,000 lines of Python code. The document rule mining
is implemented in Python, while the codebase rule mining, rule
integration functionality, and probability model generation were
implemented in Java. When conducting AUG mining, we set the
frequency threshold (𝜏 in Algorithm 1) to 10 according to previ-
ous studies,which means that nodes appearing with a frequency
exceeding 10 will be expanded and further included in the mining
process. For document mining, our targets include widely used
classes in Javadoc and the documents of projects that are required
for precision evaluation in the experiments.

5.2 Experimental Dataset

To evaluate the effectiveness of GraphiMuse, we employ the ex-
tended MuBench [3, 42] benchmark as our dataset. MuBench is a
collection of API misuse data derived from 69 real open-source soft-
ware projects, and it is actively maintained. MuBench details each
misuse instance, its exact location, and the originating projects. The
originalMuBench dataset [3] contains 84APImisuse instances. Sven
et al. [42] further expanded MuBench to include 141 additional mis-
uses, resulting in an extended benchmark comprising 225 misuses.
In addition, during the experimental process, we identified 17 new
instances of API misuse. As a result, the API misuses identified in
the ground truth include a total of 242 instances. After setting up
the dataset, we perform detection at an individual project level and
evaluate how many misuses can be detected by GraphiMuse. We
use precision and recall as evaluation metrics.

All the experiments are conducted on a device with 64 cores
of 2.3GHz CPU, 128GB RAM, NVIDIA Ampere A100 GPUs, and
40 GB memory. The operating system is Ubuntu 20.04. A detailed
exploration of our experimental procedures and results is as follows.

5.3 RQ1: Effectiveness of GraphiMuse

To assess GraphiMuse’s effectiveness, we measure its precision
and recall in detecting API misuses and compare with existing tools.

5.3.1 Evaluate GraphiMuse on the MuBench dataset. We choose
GROUMiner [31], DMMC [29] and MuDetect [42] as our com-
parison tools. GROUMiner represents API usages in the form of

Table 1: Experimental Results: Experiment P and Rmeasures

precision and recall, respectively. CM: confirmed misuses,

KS: kappa score, Hits: detected misuses from ground truth.

Detector Experiment P Experiment R
CM P KS Hits R KS

GROUMiner 6 2.0% 0.64 7 2.9% 1.00
DMMC 19 6.2% 0.52 24 9.9% 0.72
MuDetect 51 13.9% 0.84 49 20.2% 0.87
MuDetectXP 47 27.0% 0.90 95 39.2% 0.84
GraphiMuse 113 42.0% 0.92 132 54.5% 0.93

directed acyclic graphs, and detects API misuse based on mined
graph patterns. DMMC detects missing method calls as violations
of the majority rules in the codebase. MuDetect also uses a graph
representation of API usages to mine and detect API misuse and
achieves promising results. Furthermore, MuDetect has imple-
mented a cross-project version MuDetectXP, mining API usage
patterns from multiple projects, aiming to increase the accuracy
of mined patterns. We also conducted a comparative study with
MuDetectXP. Note that, we did not implement a cross-project
version of our tool mainly because cross-project mining is ineffi-
cient, which takes much time to mine one certain pattern. Moreover,
APICAD [47] is a relevant tool that achieves state-of-the-art results,
however, it is designed for C/C++, disabling the direct experimental
comparison with it.

To measure the effectiveness of the above tool, we follow the
experimental setting of MuDetect. Precision is calculated by the
ratio of correctly identified API misuses to the total reported by
these tools. In contrast, recall is defined as the number of correctly
detected API misuses, which are referred to as hits, divided by the
total number of misuses specified in the benchmark. The correct-
ness of detected misuses is manually validated. To avoid bias of
manual inspection, two authors independently reviewed the ex-
perimental results and subsequently engaged in discussions. We
utilized Cohen’s Kappa score to quantify the level of agreement.

In terms of API documents, we take as inputs the Java JDK API
reference2 and the API documents of the projects in MuBench. We
use the projects’ specific API documents since they describe the
public APIs whose usage rules may also be mined from the project
itself (e.g., the usage of public API in unit tests).

Results. Table 1 summarizes the results of GROUMiner, DMMC,
MuDetect, MuDetectXP and GraphiMuse. Following MuDe-
tect, we scrutinized the top 20 detection outcomes for each project,
and GraphiMuse identified a total of 269 instances. Among these,
113 were true positives, culminating in a precision of 42.0%. In com-
parison, GROUMiner detected 6 true positives out of 300 results,
resulting in a precision of 2.0%. DMMC achieved 19 true positives
out of 307 results (6.2%). MuDetect obtained 51 true positives out
of 367 results (13.9%). MuDetectXP achieved 47 true positives out
of 174 (27.0%). The experimental results show that our probabilis-
tic model can effectively detect API misuse. This is because, by
representing API usage rules in a probabilistic manner, we signifi-
cantly reduce false positives, thus improving precision. Moreover,
the use of high-quality rule sources mining from reference API
2docs.oracle.com/javase/8/docs/api/index.html
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documents effectively increases the tool’s coverage of API knowl-
edge, enabling it to detect a greater variety of API misuse types.
In contrast, GROUMiner, DMMC andMuDetect generated a sig-
nificant number of false positives due to the issues of nodes under
generalization, redundant information, and similar rules. These con-
cerns have been considerably improved in GraphiMuse through
the implementation of heuristic strategies and document mining.

Table 1 also presents the results of recall. GraphiMuse identi-
fied a total of 132 out of 242 API misuses provided by MuBench,
resulting in a recall rate of 54.5%. In comparison, GROUMiner,
MuDetect, and MuDetectXP found 7, 49, and 95 misuses, achiev-
ing a recall rate of 2.9%, 20.2%, and 39.2%, respectively. It can be
observed that GraphiMuse shows a slight improvement in recall
rate, although not significantly. GraphiMuse outperforms existing
tools mainly because the document knowledge integrates more API
usage patterns into the probabilistic model, enabling the detection
of more API misuses. This might be attributed to the dataset con-
taining some APIs that are not widely used, making it challenging
for codebase mining methods to achieve substantial results.

Although GraphiMuse performs well in terms of averaged pre-
cision, it fails to detect certain API misuses. For instance, within
the Jackrabbit [4] project, an API misuse of Map.get() is caused
by the absence of a int parameter. However, the widespread use
of int creates a loosely connected dependency between int value
creation and API call Map.get(). Although this misuse is detected
by GraphiMuse, it does not appear among the top 20 detection
results due to the low probability. In contrast, MuDetect includes
this particular misuse in its top 20 detection results.

5.3.2 Evaluate GraphiMuse in real-world open-source project. In
addition to MuBench, we selected 5 high-quality Java open-source
projects for the evaluation of GraphiMuse. Due to the absence of
ground truth, the detection outcomes were assessed for potential
API misuses through manual verification. Furthermore, we evalu-
ated the time required to conduct analyses on open-source projects.
The experimental setup we employed is identical to the configura-
tion used in MuBench, with the probability threshold for filtering
results set at 80%.

Results. table 2 presents the detection results for real-world
open-source projects. Based on the results, GraphiMuse is indeed
capable of identifying potential API misuses in real-world open-
source projects, with an average accuracy rate of 25.8%. The accu-
racy is lower compared to the results from the dataset experiments.
Upon analyzing the experimental outcomes, we discovered that the
reduced effectiveness could be attributed to the challenge of obtain-
ing comprehensive documentation for some open-source projects,
which hindered the effective application of methods that integrate
codebase and documentation information. Additionally, the strong
coding conventions of some open-source project contributors led to
the generation of patterns in the code mining process that were not
necessarily correct. This is a common problem that is inherently
difficult to avoid in pattern-mining-based approaches.

5.4 RQ2: Impact of Hyperparameter

We thenmeasure the impact of the hyperparameter onGraphiMuse’s
effectiveness.

Table 2: Experimental Results in real-world open-source

projects. LOC: Lines of Code, PAM: Potential API Misuses,

TF: Total Findings ,KS: Kappa Score, Time: Detection Time.

Project LOC PAM TF KS Time(s)

StreamSpinner 43554 15 57 0.90 31.22
OX-Framework 116772 10 27 0.64 75.41
htmlunit-2.9 174832 8 37 0.86 62.25
heritrix3 217446 12 52 0.72 138.36
rhino 238674 10 40 0.92 178.71

5.4.1 Impact of top𝑁 . When reporting the detected API misuses at
Section 4.4.3, the number of reported misuses affects the precision
of GraphiMuse. Beyond the top-20 results shown in Table 1, we
also evaluate the precision in top 10, 15, 20, 25, and 30, respectively.
Due to the limited number of detection results from MuDetectXP,
variations in top n are minor, therefore, Table 2 does not include it.
Other experimental settings remain consistent with RQ1.

Table 3: Precision of different tools @Top-n

Tool P@10 P@15 P@20 P@25 P@30
GROUMiner 2.6% 2.8% 2.0% 1.6% 1.2%
DMMC 7.4% 7.6% 6.2% 6.0% 6.5%
MuDetect 11.6% 10.8% 13.9% 12.6% 12.3%
GraphiMuse 47.9% 45.2% 42.0% 37.8% 35.8%

Results. Table 3 presents the precision of GraphiMuse with
𝑁 as 10, 15, 20, 25, and 30, where P@N shows the precision with
the top-N results. As 𝑁 decreases, the precision of GraphiMuse
steadily improves, increasing from 35.8% at 𝑁 = 30 to 47.9% at
𝑁 = 10. These experimental results demonstrate that GraphiMuse
effectively prioritizes more reliable detection results. This outcome
is attributed to our ranking metric, which is based on probability
models that reflect the reliability of the detection outcomes.

5.4.2 Impact of threshold 𝜃 . Moreover, instead of reporting the
top-N result, GraphiMuse could report misuse results based on a
user-defined threshold 𝜃 (Section 4.4.3). The setting of 𝜃 also affects
the quality of the final rules. Intuitively, if 𝜃 is set too low, too
many erroneous API misuses will be introduced, leading to a high
number of false positives. Conversely, if 𝜃 is set too high, many
correct misuses will be discarded, resulting in false negatives. To
determine a reasonable threshold 𝜃 , we conducted experiments to
formally analyze the effects of different thresholds.

Table 4: Precision and recall of GraphiMuse with different

threshold 𝜃

𝜃 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Precision 6.2% 10.5% 12.8% 16.8% 33.5% 47.2% 63.1%
Recall 54.5% 54.5% 54.1% 53.7% 52.9% 52.1% 49.6%

Results.Table 4 presents the precision and recall of GraphiMuse
with different threshold 𝜃 . The experimental results show that as
𝜃 gradually increases, the precision continuously improves while
the recall declines. As mentioned earlier, despite our probability
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model reflecting the reliability of the detection results, there are
still instances where true positives have relatively low confidence.
These true positives are filtered out as 𝜃 exceeds their confidence
level, leading to a decrease in recall. However, experimental results
indicate that the decrease in recall is relatively gradual, and even
when 𝜃 increased to 0.8, there is still approximately 50% recall. With
this threshold, a substantial number of false positives are filtered
out, leading to significant improvement in the detection outcomes.
These experimental findings demonstrate that GraphiMuse effec-
tively provides higher confidence levels for true positives.

5.5 RQ3: Ablation Study

Since our work involves building a probabilistic model based on
rules mined from both the codebase and the documents, the contri-
bution of each component significantly impacts the effectiveness
of GraphiMuse. Therefore, in this section, we perform an ablation
experiment to evaluate the contribution of each component.

5.5.1 Effect of heuristic strategies in codebase mining. In Section 4.2,
we proposed three heuristic strategies to enhance the accuracy of
mined rules from the codebase. We evaluate whether the three
heuristic strategies designed in Section 4.2.1 are helpful in increas-
ing GraphiMuse’s accuracy. To do that, we simply disable those
strategies and execute GraphiMuse using the same setting at RQ1.

Table 5: Effectiveness of codebase mining heuristics and in-

tegrating documents

Tool P@10 P@15 P@20 P@25 P@30 Recall
GraphiMuse 47.9% 45.2% 42.0% 37.8% 35.8% 54.5%
GraphiMuse𝑤 44.5% 37.1% 32.8% 27.2% 23.3% 54.5%
GraphiMuse𝑑 31.1% 28.3% 27.2% 27.0% 27.0% 42.1%

Results. Row GraphiMuse𝑤 in Table 5 shows the experimental
results with the heuristic strategies in codebase mining disabled.
Without these strategies, detection precision falls by 5% to 15% com-
pared to results with heuristics. This improvement can be attributed
to the heuristic strategies providing a higher level of generalization
for the mined rules from the codebase, enhancing rule abstraction.
The experimental results also demonstrate that the heuristic strat-
egy did not alter the tool’s recall rate. This is attributed to the fact
that our heuristic strategy is primarily designed to unearth more ac-
curate rules and streamline redundant rules, rather than generating
new rules. The effectiveness of rule optimization is also evidenced
in RQ1, whereMuDetect detects 367 results, while GraphiMuse
detects only 269, significantly reducing false positives.

5.5.2 Effect of Integrating Documents. In Section 4.3.2, we present
techniques for integrating document rules into probabilistic model.
We then evaluate whether integrating the knowledge from doc-
uments into the probabilistic model is helpful. To measure the effect
of integrating documents, we compare the precision of GraphiMuse
with and without the knowledge from documents. The remaining
experimental settings are the same as RQ1.

Results. Table 5 presents the experimental results, where row
GraphiMuse𝑑 shows the results without documents. The experi-
mental results reveal that the precision of detection results when

incorporating document information, is on average 15% higher com-
pared to the precision without incorporating document information.
This improvement can be attributed to the higher priority given to
document information during the ranking process, leading to detec-
tion rules that rely on documents having greater reliability. In fact,
the top 10 detection results are often supported by document infor-
mation, further emphasizing the high accuracy of such information
and its significant contribution to API misuse detection.

5.5.3 Effect of heuristic strategies in documentmining. In Section 4.3,
we introduced several heuristic strategies in document mining. To
evaluate their usefulness, we use the knowledge extractor developed
by Ren et al. [40] as a baseline (without those strategies). Since we
did not find the open-source tool for this paper, we re-implemented
this tool by ourselves. We compare our document mining with
this approach using two metrics: recall𝑑𝑜𝑐 and precision𝑑𝑜𝑐 . Since
the dataset used by Ren et al. is also not available, we randomly
sampled 150 API descriptions from the Java JDK API reference as
our dataset. We manually analyze the rules contained in each API
fragment and take them as ground truth.

Table 6: Effectiveness of document mining heuristics

Type
Method Baseline Ours

precision𝑑𝑜𝑐 recall𝑑𝑜𝑐 precision𝑑𝑜𝑐 recall𝑑𝑜𝑐

Parameter 89% 72% 94% 89%
Intra-method 57% 88% 89% 88%

Results. Table 6 illustrates the results with and without the
heuristic strategies. Our tool achieves a 5% and 17% improvement
in precision and recall for parameter rules, respectively, and a 32%
improvement in precision for intra-method rule mining. These in-
creases can be attributed to LLM’s excellent comprehension of com-
plex natural language in documents, and its ability to discern subtle
differences in context. These results validate that our heuristic rules
can enhance the quality of patterns mined from documents.

5.6 Discussion

In this section, we discuss the limitation of GraphiMuse and the
threats that may affect the validity of our evaluation.

Limitations. First, since our probabilistic model is initially in-
ferred from the codebase, it’s influenced by the quality of the code.
Although our probabilistic model can alleviate this problem to
some extent, the tool might still learn erroneous patterns from im-
properly written code by developers. Second, due to the inherent
limitations of NLP technology, the rules mined from the docu-
ments are not guaranteed to be entirely accurate. Moreover, our
tool currently supports a portion of misuse categories, but misuse
scenarios in real-world projects are diverse, such as repeated in-
vocations (ServerSocket.bind() can only be called once), thread
synchronization errors (wait() and notify() should always be
used within a synchronized code block), etc. We plan to expand
document mining to support a wider variety of misuse types.

Threats to Validity.GraphiMuse outperforms existing approaches
on the MuBench dataset. However, it still needs to be tested on
more real-world projects and collected feedback to assess its gen-
eralizability. Moreover, GraphiMuse currently only supports Java
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programs, disabling the experimental comparison with API misuse
detector designed for C/C++ programs. We plan to support more
programming languages in the near future.

6 RELATEDWORK

In this section, we will introduce the relevant work on API misuse
detection and the mining of patterns from documents and codebase.

API misuse detection. In work related to API misuse detec-
tion, some research uses manually designed templates to represent
API patterns. IMChecker [11] employs domain-specific language
to transcribe API specifications, enabling static detection of API
misuses. Similar to IMChecker, CrySL [17] is designed to ensure
proper usage of Cryptographic APIs. Many others use templates,
e.g. CogniCrypt [16] and CodeQL [5]. Besides manually designing
templates, existing approaches detect API misuses via mutation
analysis [51], stacked LSTM [34], active learning and interactive
approaches [21]. Different from these approaches, we represent API
usage as a graph and detect misuses via graph matching. Moreover,
we focus on misuse detection in Java, and there are many tools
that detect misuse in C [15], C++ [26, 27], Python [8, 12, 46] and
Go [19]. We will consider the support for misuse detection in these
languages as part of our future work.

Mining rules from codebase. To automatically generate API
usage rules, the most common approach is mining from the code-
base. Nielebock et al. [33] extract API information from commits,
subsequently mining API patterns from similar codes within the
codebase. APISAN [53], MUDetect [42] and DMMC [29] deter-
mine patterns based on the frequency of occurrence of API usages.
Similar approaches are also used by PR-MINER [22], CHRONI-
CLER [52], GROUMiner [31], and etc. However, these studies rely
on frequency-based mining, overlooking the confidence informa-
tion embedded within the patterns, which leads to low accuracy.
Our approach can mitigate this issue by leveraging the probabilistic
model. The most relevant work is HAPIs [32] which similarly learns
API usage rules via a statistical approach. Differently, HAPIs only
learns the method call sequence patterns using a hidden markov
model [36], while GraphiMuse models general API usage patterns
based on probabilistic graphical model. Other work [9, 10] mine
code rules from codebase, but for different purpose.

Mining rules from documents. Besides, researchers have sug-
gested various methods for automated document mining. Pandita
et al. [35] infer temporal constraints from natural language API
descriptions with NLP and ML techniques. Liu et al. [24] proposed
LeadFOL to automatically transform API reference documents into
formalized first-order logic formulas using a joint learning method.
Several works [18, 25, 40] utilize knowledge graphs to construct
fine-grained dependencies and constraint relations of API. In con-
trast, we use LLM to enhance knowledge retrieval ability and lever-
age mined rules to make modifications to the probabilistic model,
thereby enhancing detection performance.

Combinedmining codebase and documents.Wang et al. [47]
proposed a method for constructing API usage patterns by incor-
porating information from both documents and code repositories.
They extracted API usage patterns separately from documents and
code repositories and then merged them using logical operations
to create new patterns. Although this approach is intuitive, it does

not fully exploit the advantages of the high accuracy of document
information and the wide coverage of code repository information.
To address this limitation, we aggregate the knowledge from two
sources using the probabilistic model and combine them deeply.

Ranking. Past research has used different sorting techniques,
like comparing the similarity between the code under test and the
rules [31, 48, 49], or utilizing the frequency of occurrence of the par-
ticular misuse as a criterion for sorting [22, 43, 44]. These methods
consider the mined rules as correct rules and place high demands
on the accuracy of the mining process. In contrast, GraphiMuse
does not assume complete rule accuracy, instead, it utilizes the prob-
ability model to represent the possibility of a rule being correct.

7 CONCLUSION

In this paper, we proposed GraphiMuse, a novel probabilistic API
misuse detector, based on a probabilistic graphical model. It ex-
tracts API usage rules from both codebase and documents, and
aggregates them to generate a probability model. We employed
heuristic strategies in mining codebases and documents to enhance
detection accuracy. Evaluation results on MuBench showed that
GraphiMuse achieves a precision of 42.0% and a recall of 54.5%, out-
performing existing approaches. Furthermore, we assessed the im-
pact of documentation information, hyperparameters, and heuristic
strategies. Our implemented tool and dataset are publicly available
at https://github.com/18373637myl/GraphiMuse.
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