
Code Property Graph Meets Typestate: A Scalable
Framework to Behavioral Bug Detection

Xingjing Deng1,*, Zhengyao Liu1,*, Xitong Zhong1, Shuo Hong1, Yixin Yang1

Xiang Gao1,#, Xuhui Yan2, Hailong Sun1,#
1 Beihang University, Hangzhou Innovation Institute of Beihang University

{xjdeng, zhengyaoliu, xitongzhong, hongshuo, yixinyang, xiang_gao, sunhl}@buaa.edu.cn
2 Huawei Company, yanxuhui@huawei.com

Abstract—Behavioral bugs caused by incorrect state changes
are particularly challenging to identify because they depend
on specific code execution paths. While code property graph
(CPG) combine multiple code views through abstract syntax trees
(AST), their built-in redundancy from syntax details and fixed
connection rules make them hard to scale—a major problem
when analyzing large software systems. We introduce QVoG,
a new framework that improves CPG by combining graph-
based code analysis with state behavior checking. Our main
innovation lies in simplifying the CPG at the statement level
by consolidating control and data flows into meaningful code
blocks and optimizing the edges. This approach reduces the graph
size by more than 10 times compared to AST-based methods
while maintaining accuracy. This lightweight design allows easy
integration of state tracking, where we match object lifecycle
rules to simplified CPG connections using replaceable patterns.
The combination of streamlined graphs and state-aware analysis
helps QVoG effectively find difficult-to-identify behavioral bugs,
successfully detecting 25 issues (including 17 confirmed cases
and 2 official CVE) in real-world projects. Importantly, QVoG
analyzes raw source code without requiring compilation and
supports projects exceeding 1 million lines of code.

Index Terms—Code Property Graph; Typestate Analysis; Bug
Detection;

I. INTRODUCTION

Behavioral bugs, such as use-after-free, double-free, and
resource leaks, pose a significant challenge in modern software
systems. Unlike structural vulnerabilities that can often be
identified through syntactic patterns, behavioral bugs arise due
to incorrect state transitions during program execution. These
issues frequently manifest in complex real-world scenarios
where objects or resources are accessed in unintended states,
leading to security vulnerabilities, crashes, or memory corrup-
tion. Many existing static analysis techniques, such as [1] [2]
[3], primarily focus on code similarity, hence struggle to detect
these issues because they fail to capture the temporal aspects
of program execution. Additionally, while some existing ap-
proaches offer deeper insights into program behavior, they may
rely on computationally intensive methods such as symbolic
execution, constraint solving, and abstract interpretation [4] [5]
[6]. They can be prohibitively expensive in terms of time and

* Equal contribution, listed in alphabetical order
Corresponding author

resources, making them impractical for large-scale software
projects.

To address security and reliability concerns, graph-based
code analysis has emerged as a powerful technique in static
analysis. Code Property Graph (CPG) [7] unifies multiple
program representations — such as Abstract Syntax Trees
(AST), Control Flow Graph (CFG), and Program Dependency
Graph (PDG) — into a single intermediate representation.
This graph-based approach has proven highly effective for
query-driven bug detection. By leveraging predefined graph
traversal rules, CPG-based methods can identify structural
vulnerabilities such as injection attacks, buffer overflows or
insecure API usage patterns [8] [9] [10] [11].

However, despite their success in structural analysis, CPG
face fundamental challenges in detecting behavioral vulner-
abilities. The core issue lies in the fact that CPG primarily
model program structure rather than execution behavior, mak-
ing them ill-suited for reasoning about state changes and object
lifecycles. This limitation leads to two key problems:

First, CPG lacks explicit state-tracking mechanisms, making
it difficult to analyze resource management patterns within
software. Many behavioral bugs arise from incorrect object
usage sequences — such as improper memory deallocation,
premature resource release, or unexpected state transitions in
finite-state machines. Without a way to model object lifecycles
and enforce typestate rules [12] [13], conventional CPG-
based analysis cannot effectively detect these vulnerabilities.
Moreover, modern software often involves complex interac-
tions between objects across multiple functions or modules,
where aliasing—where multiple references point to the same
underlying object—plays a critical role. However, CPG fre-
quently struggles to accurately track these alias relationships
and inter-procedural dependencies, further limiting their ability
to capture complex behavioral issues.

Second, CPG’s scalability is severely hindered by graph
complexity. Traditional CPG is constructed at the AST level,
resulting in excessively large and redundant graph representa-
tions as the code base grows. Since AST-based structures re-
tain fine-grained syntactic details, they introduce unnecessary
noise, increasing memory overhead and slowing down query
execution. This high computational cost makes it impractical
to apply CPG-based analysis to large-scale software projects,

particularly those exceeding millions of lines of code.
Another significant challenge is generalization across dif-

ferent programming languages. While many bug detection
techniques aim to support multiple languages, variations in
syntax, semantics, and memory management models necessi-
tate language-specific adaptations. Most existing CPG-based
analysis frameworks rely on language-dependent features,
requiring developers to manually redefine analysis rules for
each new language. The lack of a unified cross-language rep-
resentation hinders the portability and extensibility of existing
detection methods.

These challenges underscore the need for a more expressive,
scalable, and language-agnostic program representation — one
that not only captures structural relationships but also models
object states over time while remaining efficient for large-scale
software analysis.

To address these limitations, we introduce QVoG, a query-
based static analysis framework that enhances CPG with
graph simplification and typestate analysis. Specifically, QVoG
streamlines CPG representations by reducing redundancy in
AST nodes and eliminating unnecessary dependencies, thereby
improving efficiency. Additionally, it integrates state-tracking
mechanisms by introducing refined data-flow edges and alias
analysis, enabling precise reasoning about state transitions,
object lifecycles, and resource management patterns. By com-
bining structural analysis with behavioral modeling, QVoG ef-
fectively bridges the gap between structural and behavioral bug
detection, leading to more accurate and efficient static program
analysis. Specifically, QVoG incorporates the following key
innovations:

• Simplified CPG Structure. To alleviate the excessive com-
plexity and redundancy in the traditional CPG represen-
tations like those in Joern [14], we simplify the CPG by
constructing it at the statement level while integrating CFG,
Data Flow Graph (DFG), and Call Graph (CG) into a unified
representation. This reduces graph bloat, improving both
efficiency and scalability.

• Scalable and Adaptable Detection. To minimize the dif-
ference between languages, we adopt a generalized detec-
tion algorithm inspired by LLVM’s [15] design philosophy,
where all attributes inherit from a common Value-based
structure. This abstraction enables the transformation of
language-specific data into a unified format, allowing for
cross-language compatibility.

• Behavioral Consistency Enforcement. To detect behavioral
bugs, we leverage typestate analysis to construct a formal
model of expected object or API usage patterns. Once the
corresponding Deterministic Finite Automaton (DFA) is es-
tablished, we transform the analysis into a Domain-Specific
Language (DSL) query, enabling efficient and automated
detection of violations.

We evaluate QVoG across three key dimensions: graph size
and query efficiency, behavioral bug detection performance,
and real-world applicability. Our results demonstrate that the
optimized CPG representation significantly reduces graph size,

DatabasesUser('s) Source Code S-CPG Build

S-CPG Database Construction

Bug Report

User('s) DSL

Parser

Predicate

Database Query

TypeState
Analysis

Query
Execution

DSL Translator

Fig. 1: Workflow of QVoG

containing only one-tenth the number of nodes and one-
twentieth the number of edges compared to Joern. Addition-
ally, QVoG outperforms Joern in computational efficiency,
using nearly half the CPU time. In behavioral bug detection,
QVoG achieves a precision of 84.21% and a recall of 89.54%,
showcasing its effectiveness in identifying complex issues.
Furthermore, in real-world applications, QVoG has reported
25 security issues, with 17 confirmed by developers and 2
assigned CVE numbers, highlighting its practical impact and
reliability. QVoG is publicly available as of now [16]–[19].

II. METHODOLOGY

To address the aforementioned challenges, we propose
QVoG, a static analyzer based on simplified CPG, referred
to as S-CPG in subsequent chapters. QVoG is designed to
be a multi-language framework for detecting behavioral bugs
using typestate modeling. This section first explains detailed
description of the overall design of the framework. Then we
will introduce the functionality of its individual modules, the
detection algorithm, the S-CPG, and how users can interact
with the system.

A. Workflow of QVoG

As shown in Figure 1, to support behavioral bug detection,
we employ a deterministic finite automaton (DFA) to model
program state transformations. DFA can be represented using
a specially-designed DSL. To support bug detection, QVoG
builds S-CPG using static analysis tools tailored to different
languages, and stores the constructed S-CPG into a hybrid
database. Then, the behavioral bug detection is performed by
executing the queries modeled by DFA on S-CPG. Those
phases are decoupled to enable greater flexibility and mod-
ularity.

To optimize performance, QVoG employs a hybrid storage
strategy: S-CPG is stored in a graph database, while func-
tion summaries and other metadata are cached in a separate
database to optimize query performance by minimizing redun-
dant computations. By structuring the workflow in a modular
and efficient manner, QVoG ensures scalable and adaptable
static analysis for detecting software bugs.

B. Predicate-based Behavioral Bug Detection

To address behavioral bugs such as use-after-free (UAF),
which often arise from incorrect state transitions of variables
leading to unintended or unsafe program behavior, we employ
a DFA to model and manage these state transformations.
The DFA serves as a structured framework to define and
enforce valid state transitions, ensuring that variables are used
in a safe and predictable manner. To realize the function-
ality of the automaton, we define two pivotal components:
FilterPredicate and FlowPredicate. These predicates act as
foundational mechanisms for filtering and simulating state
transitions within the automaton. Before delving into the
specifics of these predicates, it is essential to establish the key
detection principles underpinning QVoG. The predicate-based
query library provides a systematic and language-agnostic
approach to analyzing program behavior. By transforming
program data into the engine’s internal data structures, the
library enables efficient filtering and processing of this data.
Following this overview, we will formally define the automa-
ton and predicates, providing a rigorous foundation for their
application in detecting and mitigating behavioral bugs.

Definition 1 (Typestate Automaton). A variable’s typestate
is modeled as a deterministic finite automaton (DFA) M =
(S,Σ, δ, s0, F), where:
• S is a finite set of states (e.g., {INIT,ALLOC,FREED}).
• Σ is a set of program operations (e.g.,
{alloc,free,use}).

• δ : S × Σ→ S defines state transitions.
• s0 ∈ S is the initial state.
• F ⊆ S denotes safe terminal states.

Definition 2 (FilterPredicate). The FILTERPREDICATE ϕ(n)
selects AST nodes n that correspond to critical operations
(e.g., allocation/free) σ for state tracking:

ϕ(n, σ) :=

{
1 if ∃σ ∈ Σ, n is operated by operation σ,
0 otherwise.

which operates purely on syntax, independent of the current
state s.

Definition 3 (FlowPredicate). The FLOWPREDICATE ψ(u, v)
verifies whether two nodes u, v in the program graph (S-CPG)
can participate in a valid state transition sequence:

ψ(u, v) :=

1 if ∃ path u⇝ v with operations σ1, ..., σk s.t.

δ∗(si, σ1...σk) = sj in automaton M,

0 otherwise.

where δ∗ extends δ to path sequences. This predicate requires
analyzing both graph connectivity and state transition logic.

Consider the UAF problem as an example. The source →
sink model provides a structured approach for identifying
potential vulnerabilities. In this model, a free(v) operation acts
as the source, while a use(v) operation serves as the sink,
indicating a potential UAF violation. However, this simple
model is insufficient on its own. In practice, certain operations,

such as realloc(v), can safely reallocate memory, effectively
mitigating the risk of UAF vulnerabilities. We classify such
operations as barriers, as they prevent unsafe access to freed
memory. By leveraging the barrier mechanism, we can sig-
nificantly reduce the number of meaningless paths that would
otherwise need to be considered. This approach enhances the
efficiency of the analysis, avoiding the need for SMT solving,
which might still yield imprecise results. A UAF violation is
flagged if execution follows a source → sink pattern without
encountering a barrier. Conversely, a source → barrier → sink
pattern ensures proper memory management and prevents UAF
issues. This requirement is formally expressed as a Linear
Temporal Logic (LTL) constraint. This invariant ensures that
after a free(v) operation, use(v) is prohibited until a realloc(v)
occurs.:

G (free(v)→ X (¬use(v)U realloc(v)))

where
• G (Globally) ensures the condition holds at all times
• X (Next) enforces the condition in the next state
• U (Until) requires the condition to hold until another con-

dition is met

Algorithm 1: UAF Detection via FilterPredicate and
FlowPredicate
Input: S-CPG G;
Deterministic Finite Automaton (DFA) M ;
Variable v
Output: Violation flag (boolean)
Sfree ← FilterPredicate(G,M,FREED, v);
Suse ← FilterPredicate(G,M,USE, v);
Srealloc ← FilterPredicate(G,M,REALLOC, v);
foreach u ∈ Sfree do

foreach w ∈ Suse do
if FlowPredicate(G,M, u,w) then

if ∄ r ∈
Srealloc such that FlowPredicate(G,M, u, r)∧
FlowPredicate(G,M, r, w) then

return VIOLATION ;
end

end
end

end
return SAFE;

Detecting behavioral bugs involves two key processes:
node filtering (via FilterPredicate) and relationship evaluation
(via FlowPredicate). Integrating these predicates into types-
tate analysis enables precise tracking of state transitions and
efficient detection of memory safety violations. The Filter-
Predicate identifies critical nodes (e.g., free(v), use(v)) within
the AST, while the FlowPredicate validates the logical flow
between nodes in the program graph. Specifically, it can trace
the data flow to determine whether the source and sink operate
on the same variable. Additionally, during DFG traversal, we

directly construct alias mappings for the source variable using
AssignStatement, improving detection accuracy by capturing
indirect references. After establishing data flow relationships,
we can further leverage control flow and the call graph to
verify whether the sink is actually reachable from the source
when necessary. By combining these predicates with the LTL
invariant, we ensure memory safety by verifying that all
execution paths conform to the UAF constraint. The formal
algorithm for UAF detection is provided in Algorithm 1.

Algorithm 2: Optimized Data FlowPredicate via DFG

Input: Graph: DFG; Node u, w;
Output: Data Flow existence between u and w
Nreachable ← sort(ReachableNodes(DFG, u));
foreach r ∈ Nreachable do

if r == w then
return TRUE;

end
if CacheContains(r) then

continue;
end
CacheAdd(r);
if FlowPredicate(DFG, r, w) then

return TRUE;
end

end
return FALSE;

Behavioral bugs often require path-sensitive algorithms to
accurately track variable states across all possible execution
paths. However, the path-sensitive nature of these algorithms
introduces significant computational overhead, making them
time-consuming and resource-intensive. To address this chal-
lenge, we propose a cache-based FlowPredicate algorithm
for different types of edges, as detailed in Algorithms 2.
The cache-based DFG FlowPredicate optimization leverages
caching to enhance efficiency by reducing redundant computa-
tions. Given two nodes u and w, the goal of data FlowPredicate
checks there u and w have data flow relation. To optimize
this process, a caching strategy is employed. Specifically,
reachable nodes of node u are sorted by line number, and
each node is checked for prior visitation. If a node has already
been visited, further dataflow traversal for this predicate is
discontinued from that node, thereby preventing redundant
evaluations and improving performance. The core idea of
our approach is to reduce redundancy by leveraging caching
mechanisms and node filtering, thereby improving efficiency
without compromising accuracy. The CFG-CG cache strategy
follows a similar rationale. If a node can only transition
along a single edge, it can be cached at the destination node
after the first traversal is completed. This approach minimizes
redundant computations and enhances efficiency by ensuring
that subsequent traversals can directly utilize cached results
instead of re-evaluating the same paths.

C. Simplified Code Property Graph Representation

After constructing the abstract DFA for a specific problem,
we further design the S-CPG to align with the appropriate
analysis mechanisms. As proposed by Yamaguchi [7], the
CPG represents source code structure and semantics. However,
conventional CPGs, like those in Joern, store AST nodes with
numerous edge types, resulting in excessive complexity. For
example, the code in Listing 1 generates around 100 nodes and
460 edges, increasing traversal overhead and hindering analy-
sis performance. To address this, we propose optimizations to
streamline the CPG, reducing its complexity while ensuring it
remains effective for detecting behavioral bugs.

Listing 1: Example C program to extract CPG
1 #include <stdio.h>
2 int main(void) {
3 int a = 2;
4 int b = a * a;
5 if (b > a) {
6 b = b - a;
7 }
8 printf("a + b = %d\n", a + b);
9 return 0;

10 }

Specifically, we propose a simplified CPG that stores the
code at the level of statement. As shown in Figure 2, instead
of storing AST nodes directly in the graph database, we make
them attributes of the statement to which they belong, as there
is no need to traverse over the original AST structure. This
conclusion is drawn from actual observations. Behavioral bug
detection using graph queries typically [20] depends on path-
based problem detection. Given this characteristic, it is often
unnecessary to expand all paths at every AST node, allowing
us to omit a significant amount of redundant information,
thereby improving analysis efficiency and readability. When
detailed statement information is required, QVoG can directly
delve into the node’s attribute to retrieve its specific infor-
mation, and then perform a more precise analysis to ensure
detection accuracy and effectiveness. After our optimization,
the graph for Listing 1 consists of only 10 nodes and 15 edges.

More specifically, S-CPG can be defined as G = (V,E),
where V represents a statement in the source code whose
attributes are shown in the following list:
• file: The full path of the file this statement belongs to.
• lineno: The line number of this statement in the file.
• code: The original code of the statement.
• ast: The minimum AST in JSON format.
• properties: (optional) Other properties, such as function

name if the statement includes a function call.
Moreover, even if we are building the graph over statement

granularity, a single statement may still contain multiple ex-
pressions. Taking a for-loop as an example, QVoG will expand
the AST structure, and build initialization, condition, and step
expression separately.

AST AST

PDG(CDG+DDG)
AST

AST AST

AST AST

AST AST

AST AST

CG

AST

AST AST

AST AST

AST AST

AST
CFG

AST

AST AST

DFG
Statement

AST AST

AST AST

AST AST

AST AST

CG

Statement

AST AST

AST AST

AST AST

Statement
CFG

Statement

Fig. 2: Comparison of CPG before and after optimization

E represents the flow between statements. Eq. 1 to Eq. 4
presents the formal definition of E. In our implementation,
QVoG mainly combines CFG, DFG, and CG to build the S-
CPG.

E = Ecfg ∪ Edfg ∪ Ecg (1)
Ecfg ⊆ V × {true, false, ϵ} × V (2)
Edfg ⊆ V × V × {def-use, decl-use} × V (3)

Ecg ⊆ V ×F × 2P × V (4)

where:
• V: Set of program variables (local/global)
• F : Set of function identifiers
• P: Parameter mapping {(param1, actual1), . . . }

Definition 4 (Control Flow Edge (via (2))). For an edge
(u, l, v) ∈ Ecfg, label l is defined as:

l =

true, if cond(u) ∧ true br(v),
false, if cond(u) ∧ false br(v),
ϵ, otherwise,

(5)

where:

cond(u) := u is a conditional statement,
true br(v) := v is the true branch target,

false br(v) := v is the false branch target.

Definition 5 (Data Flow Edge (via (3))). A data flow edge is
defined as follows:

1) Def-Use Edge:

(u, x, def-use, v) ∈ Edfg ⇐⇒ def(u, x) ∧ use(v, x)
∧ ¬∃w ∈ path(u, v),
def(w, x).

(6)

where:
• def(n, x): Boolean predicate that is true if node n

defines (i.e., assigns a new value to) variable x.
• use(n, x): Boolean predicate that is true if node n uses

(i.e., reads the value of) variable x.

• path(u, v): Represents all nodes on any path from node
u to node v in the control flow graph, exclusive of u
and v.

2) Decl-Use Edge:

(u, x, decl-use, v) ∈ Edfg ⇐⇒ decl(u, x) ∧ use(v, x).
(7)

where (in addition to above):
• decl(n, x): Boolean predicate that is true if node n

declares (i.e., introduces into scope) variable x.

Definition 6 (Call Graph Edge (via (4))). An edge
(u, f,P, v) ∈ Ecg exists if:

v = entry(f),
∀(pi, xi) ∈ P, pi ∈ param(v), xi ∈ actual(u).

where:
• entry(f): Function that returns the unique entry node of

function f .
• param(v): Function that returns the set of formal parameters

passed to a function call occurring at node v.
• actual(u): Function that returns the set of actual arguments

passed in a function call at node u.

Traditionally, CPG incorporates a Program Dependence
Graph (PDG) [21], which is a composition of the Control
Dependence Graph (CDG) and the Data Dependence Graph
(DDG). Deviating from traditional CPGs, our methodology
first eliminates the CDG component.. In practical use, the
CDG is primarily employed to identify constraints at spe-
cific program points for SMT solving. However, in real-
world scenarios, these constraints are often complex and
computationally expensive to resolve, making the approach
inefficient. Therefore, for behavioral bug detection, we adopt
an alternative algorithmic mechanism, predicate-based query,
as described in II-B. Additionally, we simplify the DDG by
leveraging the DFG. Since the DDG essentially represents a
CFG-emulated version of the DFG, and the CFG-emulated
structure can be reconstructed through CFG traversal, we can
eliminate redundancy by caching the result after the first use.

Since we use typestate techniques to model program be-
havior, each statement effectively represents a variable’s state
transition, enabling precise tracking of changes throughout

program execution. To further improve alias analysis and
better support typestate analysis, we refine data flow edges by
classifying them into two distinct categories. The first category
consists of def-use edges, which capture the relationship
between a variable’s definition and its subsequent usage within
the same function. This includes function parameters, actual
arguments, and return values. These edges help resolve issues
related to variable scoping and ensure that the correct defini-
tion is linked to its usage. The second category is decl(are)-
use edges, which are critical for tracking variables across
different functions. These edges are particularly useful in cases
where data flow is implicit and does not form an explicit,
direct connection. For example, when a function initializes a
pointer variable and passes it to another function, the data flow
between these functions may not be immediately apparent in
a straightforward def-use relationship. By introducing declare-
use edges, we can more accurately capture such implicit flows,
thereby improving the precision of our analysis and ensuring
a comprehensive understanding of the program’s behavior.

D. Behavioral Bug Detection by Querying S-CPG

Given a program p under analysis, to validate where p
satisfies the property defined in DFA, we propose a query-
based engine to query S-CPG. Moreover, to enable users to
define DFA easily, we design a user-defined DSL to define
expected program behavior. The overall design of the query
execution engine is shown in Figure 3. On one hand, it serves
as the interface for DSL parsing, responsible for receiving,
parsing, and processing query requests from the DSL. On the
other hand, it acts as the interface for database interaction,
translating parsed queries into executable operations for the
database and efficiently retrieving and returning the corre-
sponding data. It consists of three parts: language-independent
code representation, predicate-based query library discussed in
II-B, and DSL translator. During the execution of a query,
the engine first fetches the S-CPG information from the
database. With the help of the database adapter, the S-CPG
is then converted into a language-independent representation.
It erases the differences between programming languages with
a consistent query interface. Based on this, a set of Fluent APIs
is provided to support query operations on the S-CPG. Patterns
written in DSL are then translated into query APIs and then
executed on the database. Next, we will briefly describe the
capabilities of each module.

1) Language-Independent Code Representation: To mask
differences between languages, an intermediate code repre-
sentation is often used. It makes the analysis tool more flex-
ible and scalable for new programming languages [22]. The
language-independent code representation is designed based
on our S-CPG. The ideas are inspired by LLVM IR and cpg
[23]. This representation is used for a unified AST structure
to represent detailed information of statements. A strong type
system is used to ensure a well-formatted code structure and
provide the interface with combined language features. Nev-
ertheless, not all differences between programming languages,
especially AST structures, can be avoided. For example, the

FilterPredicate FlowPredicatePredicate

TaintFlow

DataFlow...

ContainsCall Query
Library

Value

TypeStatement

Declaration Expression

CallExpression ...

...

Language-Independent
Representation

...

Database
Context

Database
Connection

QueryDescriptor

from where select

DSL Translator

User Interface

Fig. 3: Query Execution Design

Listing 2: BNF grammar of the DSL
1 Q := from <decl> {, <decl>}
2 [where [not] <FlowPredicate>
3 {and|or [not] <FlowPredicate>}]
4 select <expr> { , <expr> }
5 <decl> := type name | <FilterPredicate> name
6 <expr> := name | string

syntax of function calls in C is different from that in Python,
which results in different AST node types and structures. To
address this issue, an adapter is implemented to convert the
AST of different programming languages into the language-
independent code representation defined above. The adapter is
designed to be extensible so that users can easily add support
for new programming languages. Using the ast property stored
in S-CPG, we can re-construct the AST and convert it into our
language-independent representation.

2) DSL Translator: Once the underlying discrimination
mechanisms are fully prepared, we have built a DSL on top of
them to provide users with a more convenient interface. The
DSL is designed to offer a more intuitive and efficient way
to perform queries and operations, allowing users to express
complex data filtering and flow analysis requirements through
a concise syntax without needing to deeply understand the
underlying data structures and processing logic.

This DSL is tightly integrated with II-B, where the from
clause is utilized for FilterPredicate and the where clause
for FlowPredicate. This integration enhances the flexibility
and precision of node selection and relationship evaluation,
enabling more effective and targeted analysis. Specifically,
the from clause specifies one or more sets of nodes in the
graph as the query context, allowing users to define the type
of nodes to query using decl and optionally add predicates
for more precise filtering. The where clause applies one or
more predicates to refine the context further. For instance,
when checking path-based vulnerabilities, the DSL leverages
flow information to determine whether a path exists between
specified nodes, while also supporting additional predicates

for node filtering. Finally, the select clause specifies the
nodes to return in the query result. Designed to be simple and
intuitive, the query operators are inspired by SQL in syntax
but differ in their underlying mechanism, as detailed in the
extended Backus–Naur form grammar shown in Listing 2.
This combination of familiar syntax and powerful integration
with predicates makes the DSL both accessible and robust for
querying graph-based data.

III. IMPLEMENTATION

In this section, we provide implementation details of our
approach. It involves the S-CPG extraction, the generality of
typestate modeling, and optimization. In particular, we have
applied multiple optimization strategies to enhance the query
performance.

A. S-CPG Extraction

One of the primary focuses of our approach is on extracting
S-CPG information. While several analysis tools are available
for different programming languages, most only parse the
source code and produce an AST. We have extended these
tools to extract S-CPG information. Currently, QVoG supports
C and Python. The analysis tools used for each language are
listed in Table I.

TABLE I: Analysis tool used for S-CPG extraction

Programming Language Analysis Tool Used
C Eclipse CDT [24]

Python Scalpel [25]

As the S-CPG extraction is decoupled, this process can be
more flexible, utilizing various techniques as long as the output
CPG format meets our definition. This flexibility enhances
the analysis and opens the door for potential technological
upgrades and functional extensions in the future. The extracted
S-CPG will then be stored in a graph database. To ensure max-
imum portability, we use the standard interface provided by
Apache TinkerPop framework. Based on this, we choose Neo4j
as our graph database for its performance and reliability [26].

Finally, we embed Gremlin as the graph traversal language to
store or retrieve graph information.

B. Generality of Typestate Modeling

Once we successfully design a corresponding automaton
model, this approach exhibits strong adaptability and general-
izability. For instance, as shown in Figure 4, the model is pri-
marily designed for memory management operations, but it is
not limited to this domain. The same methodology can be ex-
tended to broader resource management tasks. In other words,
any operation that involves strict sequential usage constraints
or resources that cannot be reused can be systematically
modeled and analyzed using this automaton-based approach.
Our method is not confined to memory management, it can
be extended to file operations, synchronization mechanisms

https://neo4j.com/

Start
malloc

q0
free

free

use

realloc

free

use

not freenot free

other

use after
free

double
free

Fig. 4: Memory related detection Automaton

TABLE II: Benchmark Statistics

Benchmark Project #Cases LOC

Juliet
CWE-401 56 0.1k
CWE-415 39 0.1k
CWE-416 40 0.1k

Real-word Projects

ubertooth - 3.7k
swupdate - 90k
barebox - 385k
hev-socks5-server - 2.6k
SKRTOS sparrow - 12k
teddycloud - 68k
RefindPlus - 118k
XiUOS - 175k
scip - 1050k
pastas - 24k
PostgreSQL - 1834k

(such as locks), and other processes governed by topological
order constraints. To date, we have successfully applied this
approach to memory management, lock synchronization, and
file access, as well as to topological order-related issues,
such as code injection vulnerabilities. These implementations
demonstrate the effectiveness and applicability of this method,
providing a general theoretical framework for static analysis
that can be flexibly adapted to various types of software
security problems.

IV. EVALUATION

To validate the effectiveness of our approach, we evaluate
our tool to answer the following research questions (RQs).

• RQ1: What is the performance of QVoG in terms of time
cost?

• RQ2: How effective is QVoG compared to existing tools on
benchmark datasets?

• RQ3: How well does QVoG perform in detecting issues in
real-world projects?
Benchmark. To evaluate the effectiveness of QVoG, we use

two datasets as shown in Table II. The first one is obtained
from the widely recognized Juliet test suites [27]. It contains
test cases in various CWEs based on the template and is
designed to evaluate the effectiveness of static analysis tools
in identifying different security vulnerabilities. We conducted

https://neo4j.com/

TABLE III: Graph Size and Query Time Comparison Across Detection Tools

Project LOC Source Count
QVoG Joern

Graph Size Query Time Graph Size Query Time

CWE-401 0.1k 3 32V + 63E 2s / 8s 194V + 983E 26s / 9s
ubertooth 3.7k 8 1.2kV + 3.5kE 11s / 12s 98kV + 1107kE 36s / 14s
swupdate 90k 151 38kV + 142kE 51s / 107s 263kV + 2133kE 96s / 30s
barebox 385k 329 348kV + 1153kE 155s / 314s 2375kV + 26374kE 213s / 84s

PostgreSQL 1834k 238 583kV + 1904kE 225s / 460s Time Out Time Out

a detailed case study for three common types of bugs, all of
them are memory-related.
• CWE-401 Memory Leak The program fails to properly

release allocated memory, leading to continuous memory
consumption during its execution. This is a type of bug of
forgetting to do something on a resource.

• CWE-415 Double Free The program attempts to free the
same memory block twice, which can lead to program
crashes or security vulnerabilities. This is a typical bug of
unintentionally repeating operations on a resource.

• CWE-416 Use After Free The program continues to use
a memory block after it has been freed, which can result
in unpredictable behavior or crashes. This is a typical bug
where a resource is not checked before being operated on.

We selected these CWEs due to their prevalence in real-world
vulnerabilities and their generalizable root causes, such as
improper allocation, deallocation, or resource management,
which can extend to broader CWE categories.

The second dataset is built from real-world well-maintained
open-source projects written in C and Python. These projects
are famous or recently active in the developer community,
with stars ranging from a few hundred to several thousand,
reflecting their popularity and widespread use.

All experiments were conducted on a Windows 10 PC with
a 2.6GHz Intel Core i7-9570H CPU and 16 GB of memory.

A. RQ1: What is the performance of QVoG in terms of time
cost?

As project scale increases, source code analysis becomes
increasingly challenging due to growing complexity and re-
source demands. To evaluate efficiency, we compare QVoG
with Joern, a widely used static analysis tool based on CPG.
However, detecting all possible paths is computationally in-
feasible in practice. Therefore, we adopt a similar approach
to Joern by setting the “sliceDepth” hyperparameter (Joern’s
default is 20, while ours is 30). To evaluate QVoG and Joern
in projects with different scales, we have selected one project
from each magnitude order of 0.1k, 1k, 10k, 100k and 1000k
and set the limit of time to 1 hour.

Table III presents the results of graph size and Memory
Leak query execution time, evaluated using the RQ2 baseline
dataset and RQ3 real-world scenarios. Italics indicate an
error in the build process. Our findings reveal that QVoG
significantly reduces graph complexity, with the number of

nodes approximately one-third of the Lines Of Code (LOC)
and the number of edges roughly equal to the LOC. In contrast,
Joern exhibits substantial graph expansion, with the number of
nodes reaching from tens of times to hundreds of times of the
LOC and the number of edges scaling similarly. Moreover,
since Joern is unable to export the CPG within an hour, we
are unable to determine its exact graph size. This difference
underscores the efficiency of our approach in maintaining
a compact and manageable graph structure, which directly
enhances the query performance.

In terms of query execution time, we report results in
the format of “CPU Time / Real Time”. The CPU Time
results show that QVoG is at least one-third faster than Joern.
However, in terms of Total Time, QVoG is slower due to IO
overhead, while Joern benefits from in-memory database and
multi-core optimizations, enabling it to achieve faster overall
execution. Additionally, we measured the “database” construc-
tion time for QVoG, which completes building PostgreSQL
in 15 minutes, while Joern requires 7 minutes with 1 GB
more memory. This confirms Joern’s reliance on an in-memory
database. We believe that QVoG can be significantly faster if it
also relies on in-memory database, which is left as future work.
However, Joern does not perform all computations upfront.
Certain overlays, such as the dataflow overlay, which is very
time-consuming, may be computed when the export command
is executed. In general, even when traversing 30 statement
edges instead of 20 AST structures, our approach remains
significantly faster. This performance advantage underscores
the validity of our methodology, as the reduced graph com-
plexity and enhanced CPU efficiency are consistent with our
core design objectives.

B. RQ2: How effective is QVoG compared to existing tools on
benchmark datasets?

To evaluate the effectiveness of our approach, we compare
QVoG with several state-of-the-art static analysis tools, in-
cluding Joern (2.0.161) [14], CodeQL (2.17.2) [28], Facebook
Infer (1.2.0) [29], Clang Static Analyzer (16.04) [30], and
SVF Saber (3.0) [31]. These tools represent a diverse range of
techniques and capabilities in static code analysis, providing
a comprehensive baseline for comparison. We evaluate these
tools on Juliet dataset, since it has ground truth vulnerabil-
ities. To detect these issues, QVoG leverages the automaton
illustrated in Figure 4, which systematically models the life-

TABLE IV: Verification on Juliet Test Suites

CWE Type
Tool QVoG Joern CodeQL Infer Clang SA SVF Saber

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

CWE-401 “must” 92.50% 66.07% 77.08% 66.07% 96.96% 57.14% 0.00% 0.00% 93.02% 76.87% 49.54% 96.42%
CWE-401 “maybe” 61.53% 100.00% - - 92.00% 41.07% - - - - - -
CWE-415 85.36% 92.10% 100.00% 13.15% 100.00% 23.68% 100.00% 86.64% 100.00% 55.26% 96.96% 84.21%
CWE-416 97.43% 100.00% 91.67% 57.89% 0.00% 0.00% 0.00% 0.00% 100.00% 47.36% - -

cycle states and transitions of memory-related bugs, such as
allocation, deallocation, and usage patterns.

The results of this extended evaluation are presented in Ta-
ble IV, where we measure performance using the Precision/Re-
call Rate. We choose these metrics to provide a comprehensive
evaluation of our system’s detection capabilities. Precision
gauges the purity of our reported findings, ensuring a low rate
of false alarms, whereas Recall assesses the system’s ability
to identify all relevant instances, highlighting its coverage of
actual vulnerabilities. Defined as follows:

Precision Rate =
True Positives

True Positives + False Positives
× 100%

Recall Rate =
True Positives

True Positives + False Negatives
× 100%

Since CodeQL’s CWE-401 includes two query rules, we
report two sets of results “must” and “maybe”. The “must”
results include only high-confidence detected bugs, while the
“maybe” results capture all detected issues, including potential
false positives. As Joern’s query library currently lacks queries
for CWE-401 and CWE-415, we developed these queries our-
selves. Additionally, SVF Saber does not support the detection
of CWE-416, so no results were generated for this bug.

Regarding the experimental data, for CWE-401, QVoG pro-
duces 100% recall on the “maybe” setting, outperforming all
other tools. While CodeQL has the highest precision (96.96%),
it misses almost half the vulnerabilities. For CWE-415, we are
still doing well regarding the recall rate (92.10%), while the
highest recall of other tools is 86.64%. Infer, CodeQL and
Clang SA achieve 100% precision, which is a little higher
than ours. Finally, for CWE-416, QVoG outperforms all the
other tools in terms of both precision and recall. The superior
performance of QVoG is primarily due to the comprehensive
graph information, enabling precise control flow analysis and
detailed data flow tracking across functions and files. This
effectiveness is also closely tied to the robust implementation
strategies, which further enhance its ability to handle complex
code structures with accuracy.

C. RQ3: How well does QVoG perform in detecting issues in
real-world projects?

To highlight the capability of detecting issues across multi-
ple files, we further evaluate QVoG on open-source projects.

At the time of this writing, our analysis has uncovered a
total of 25 issues. The list of buggy projects are shown in

TABLE V: Detected Issues and Developer Confirms

Project Detected Issues Developer Confirm

ubertooth ML (2) ML (0)
swupdate ML (3), DF (1) ML (3), DF (0)
barebox ML (2), NPD (1) ML (0), NPD (0)
hev-socks5-server NPD (2), ML (3) NPD (2), ML (3)
SKRTOS sparrow NPD (1) NPD (1)
teddycloud ML (2) ML (2)
RefindPlus NPD (2) NPD (2)
XiUOS ML (2) ML (0)
scip ML (1) ML (1)
pastas ML (3) ML (3)
PostgreSQL - -
NPD: Null Pointer Dereference; ML: Memory Leak; DF: Double Free

Table V Among them, 17 issues have been confirmed and
fixed by developers based on our reports. Furthermore, our
findings were deemed significant enough to be assigned 2 CVE
identifier, underscoring the impact and real-world relevance of
our approach in identifying security vulnerabilities.

Among the identified issues, the majority stem from mem-
ory leaks, which can lead to excessive resource consumption
and degraded system performance. Additionally, we observed
a significant number of null pointer dereference issues and file
descriptor leaks, both of which can cause unexpected program
crashes or resource exhaustion. In the examples above, we
present two types of leak issues: an intra-procedure leak in
listing 3 and an inter-procedure leak in listing 4. For clarity, we
have made the the necessary simplifications in both examples.
In listing 3, the allocation of resource occurs on line 2. While
the resource is properly freed on lines 13 and 16, it is not
released on the execution path leading to line 10, resulting
in a memory leak. In Listing 4, a procedure call is made on
line 6, and within this procedure, a file is opened on line 22.
If execution proceeds normally, the control is returned to the
caller. However, if an error occurs in the procedure at line 12,
the previously allocated resource remains unreleased, leading
to a file descriptor leak.

The key strength of QVoG lies in its path-sensitive analysis,
enabling it to accurately track execution paths across different
branches. Moreover, our tool effectively models both inter-
procedure data flow and control flow, allowing for precise
detection of leaks that span multiple procedures.

D. Discussion

In this section, we discuss the limitation of QVoG and the
threats that may affect the validity of our evaluation.

Listing 3: Intra Procedure Memory Leak in swupdate
1 int parse_json(...)
2 string = (char *)malloc(size+1);
3 if (!string)
4 return -ENOMEM;
5 ...
6 cfg = json_tokener_parse(string);
7 if (!cfg) {
8 if (...) {
9 ...

10 return -ENOMEM;
11 }
12 free(string);
13 return -1;
14 }
15 free(string);
16 return ret;
17 }

Listing 4: Inter Procedure File Descriptor Leak in hev-socks5-
server
1 static int main_inner (void)
2 {
3 int res;
4 char* log_file
5 log_file = ...
6 res = logger_init(log_file, ...);
7 if (res < 0)
8 return -2;
9 ...

10 res = proxy_init (...);
11 if (res < 0)
12 return -4;
13 run ();
14 fini ();
15 }
16
17 int logger_init (char *path, ...)
18 {
19 if ...
20 ...
21 else
22 fd = open (path, ...);
23
24 if (fd < 0)
25 return -1;
26 return 0;
27 }

Limitations. Many behavioral bug patterns require well-
defined typestate models for accurate detection. Typestate
analysis is essential for tracking the correct sequence of states
a resource or object undergoes during its lifecycle. Without
a precise and comprehensive typestate model, static analysis
tools may miss important transitions or misidentify valid
patterns as errors. However, the development of such models
is hindered by several factors. First, incomplete documentation
is a pervasive issue, as not all software libraries or APIs
provide exhaustive details regarding their expected behaviors
and state transitions. Second, the continuous evolution of
software practices, where new patterns of usage emerge and
existing ones evolve, complicates the task of maintaining up-
to-date and accurate typestate specifications.

Threats to Validity. In practical detection, syntactic limita-

tions present notable challenges. Our tool, like many static
analysis approaches, inherently depends on syntactic repre-
sentations of code to model program behavior. However, it is
impossible to fully capture every syntactic pattern or language
feature across diverse software environments. This inherent de-
pendency means that our modeling may miss certain syntactic
constructs or fail to represent them adequately. As a result,
the construction of S-CPG, which relies on code structure
and behavior, may be incomplete or imprecise. Such gaps can
cause inaccuracies, including false negatives or positives, as
the tool may not fully capture the program’s underlying logic.

V. RELATED WORKS

In this section, we review existing research on code repre-
sentation techniques, focusing on graph-based approaches and
their applications in static analysis.

A. Code Representation for Static Analysis

Code representations [32], such as metric-based, token-
based, and graph-based representations, provide varying lev-
els of abstraction. Metric-based techniques extract software
complexity and structural metrics [33] [34], but they fail to
capture semantic relationships. Token-based representations,
such as Scandariato’s text-mining approach [35] and CP-
Miner’s token-pattern matching [36], offer syntactic insights
but lack deeper structural understanding.

Nowadays, most code representation techniques revolve
around graphs, as graph-based structures enable various sec-
ondary analyses, including code slicing, dependency tracking,
and model training. AST, CFG, and PDG have been widely
adopted for vulnerability detection [37] [38] [39] [40], where
AST preserves syntactic structure, CFG models control flow,
and PDG captures data dependencies [41] [42]. However,
these representations are often used in isolation, resulting in
fragmented information and increased complexity in security
analysis. To address this, Yamaguchi et al. [7] introduced
the CPG, which unifies AST, CFG, and PDG into a single
representation. Despite its advantages, existing CPG-based
techniques still generate highly complex graphs, which can
impact scalability and query performance. Our work builds
upon this foundation by introducing a more streamlined CPG
structure, effectively reducing graph complexity while preserv-
ing key program properties.

B. Graph-Based bug Detection

Graph-based static analysis has become a powerful approach
for bug detection, utilizing the inherent structure of code.
These methods can be broadly categorized into traditional
static program analysis and deep learning-driven approaches.

Traditional static analysis constructs graph-based represen-
tations at the intermediate representation (IR) level, such as
LLVM IR [43], to model control and data flow [44] [45]
[46]. While these methods offer precise bug detection, they
produce large and computationally expensive graphs, making
scalability a challenge. Techniques like symbolic execution

and SMT solving [47] [48] [49] help prune execution paths
but significantly increase analysis time.

Deep learning-based approaches use graph representa-
tions to detect bugs, including training graph neural net-
works (GNNs), fine-tuning models like GraphCodeBERT, and
prompting large language models (LLMs) [50] [51] [52] [53]
[54]. While GNNs capture code dependencies, they struggle
with memory constraints as graph size increases. Similarly,
LLMs excel at semantic analysis but face token length limi-
tations, leading to loss of critical context in large codebases.

To address these issues, we construct S-CPG directly from
raw source code and use predicate-based method to effectively
eliminate irrelevant branches, improving efficiency.

VI. CONCLUSION

Detecting behavioral bugs caused by incorrect state tran-
sitions remains a challenging problem, as these issues often
depend on specific execution paths. Traditional CPG, while ef-
fective in integrating multiple code representations, suffer from
excessive redundancy and rigid connection rules, limiting their
scalability in large-scale software analysis. To address these
challenges, we proposed QVoG, a scalable framework that
enhances CPG through graph simplification and typestate anal-
ysis. By refining node granularity and selectively adding or re-
moving edges, QVoG restructures CPG at the statement level,
significantly reducing graph size while preserving essential
control and data flow relationships. This reduction improves
efficiency without compromising accuracy. Additionally, our
framework incorporates state-aware analysis, enabling precise
detection of object lifecycle violations through pattern-based
rule matching. QVoG ’s lightweight design allows it to analyze
raw source code without requiring compilation, making it
practical for large projects exceeding one million lines of code.
In our evaluation on real-world software, QVoG effectively
identified 25 behavioral bugs, including 17 confirmed cases
and 2 CVEs. These results demonstrate that combining graph
simplification with typestate analysis provides an efficient and
scalable solution for detecting complex behavioral bugs in
modern software systems.

VII. ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-
gram of China No 2024YFB4506200, Aeronautical Science
Foundation of China with Grant No 20240058051002, and
National Natural Science Foundation of China under Grant
No 62202026.

REFERENCES

[1] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu.
Vulpecker: an automated vulnerability detection system based on code
similarity analysis. In Proceedings of the 32nd annual conference on
computer security applications, pages 201–213, 2016.

[2] Junwei Zhang, Zhongxin Liu, Xing Hu, Xin Xia, and Shanping Li.
Vulnerability detection by learning from syntax-based execution paths
of code. IEEE Transactions on Software Engineering, 49(8):4196–4212,
2023.

[3] Hao Sun, Lei Cui, Lun Li, Zhenquan Ding, Zhiyu Hao, Jiancong Cui,
and Peng Liu. Vdsimilar: Vulnerability detection based on code similar-
ity of vulnerabilities and patches. Computers & Security, 110:102417,
2021.

[4] Sicheng Luo, Hui Xu, Yanxiang Bi, Xin Wang, and Yangfan Zhou.
Boosting symbolic execution via constraint solving time prediction (ex-
perience paper). In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 336–347, 2021.

[5] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. S3: A symbolic string
solver for vulnerability detection in web applications. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 1232–1243, 2014.

[6] Kasper Luckow, Rody Kersten, and Corina Pasareanu. Complexity
vulnerability analysis using symbolic execution. Software Testing,
Verification and Reliability, 30(7-8):e1716, 2020.

[7] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Model-
ing and discovering vulnerabilities with code property graphs. In IEEE
Symposium on Security and Privacy. IEEE, May 2014.

[8] Fangcheng Qiu, Zhongxin Liu, Xing Hu, Xin Xia, Gang Chen, and
Xinyu Wang. Vulnerability detection via multiple-graph-based code
representation. IEEE Transactions on Software Engineering, 2024.

[9] Weining Zheng, Yuan Jiang, and Xiaohong Su. Vu1spg: Vulnerability
detection based on slice property graph representation learning. In IEEE
32nd International Symposium on Software Reliability Engineering
(ISSRE), pages 457–467. IEEE, 2021.

[10] Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li, and Chuanqi
Tao. Mvd: memory-related vulnerability detection based on flow-
sensitive graph neural networks. In Proceedings of the 44th international
conference on software engineering, pages 1456–1468, 2022.

[11] Peng Wu, Liangze Yin, Xiang Du, Liyuan Jia, and Wei Dong. Graph-
based vulnerability detection via extracting features from sliced code.
In 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pages 38–45. IEEE, 2020.

[12] Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel
Geay. Effective typestate verification in the presence of aliasing.
ACM Transactions on Software Engineering and Methodology (TOSEM),
17(2):1–34, 2008.

[13] Eric Bodden. Efficient hybrid typestate analysis by determining
continuation-equivalent states. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pages 5–
14, 2010.

[14] T. J. Team. Joern. Online, 2024. Available: https://joern.io.
[15] Chris Lattner and Vikram Adve. Llvm: A compilation framework for

lifelong program analysis & transformation. In International symposium
on code generation and optimization, 2004. CGO 2004., pages 75–86.
IEEE, 2004.

[16] QVoG Team. C to s-cpg. Online, 2025. Available: https://doi.org/10.
5281/zenodo.16395947.

[17] QVoG Team. Python to s-cpg. Online, 2025. Available: https://doi.org/
10.5281/zenodo.16396285.

[18] QVoG Team. Query execution engine of qvog. Online, 2025. Available:
https://doi.org/10.5281/zenodo.16396307.

[19] QVoG Team. Query of qvog. Online, 2025. Available: https://doi.org/
10.5281/zenodo.16396335.

[20] Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. Path-sensitive and
alias-aware typestate analysis for detecting os bugs. In Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 859–872, 2022.

[21] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program
dependence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems (TOPLAS), 9(3):319–349, 1987.

[22] Konrad Weiss and Christian Banse. A language-independent analysis
platform for source code. March 2022. arXiv:2203.08424 [cs.CR].

[23] Alexander Küchler and Christian Banse. Representing llvm-ir in a code
property graph. In 25th Information Security Conference, ISC. Springer,
2022.

[24] Danila Piatov, Andrea Janes, Alberto Sillitti, and Giancarlo Succi. Using
the eclipse c/c++ development tooling as a robust, fully functional,
actively maintained, open source c++ parser. OSS, 378:399, 2012.

[25] Li Li, Jiawei Wang, and Haowei Quan. Scalpel: The python static
analysis framework. February 2022. arXiv:2202.11840 [cs.SE].

[26] Rahmatian Jayanty Sholichah, Mahmud Imrona, and Andry Alamsyah.
Performance analysis of neo4j and mysql databases using public policies
decision making data. In 2020 7th International Conference on Infor-

https://joern.io
https://doi.org/10.5281/zenodo.16395947
https://doi.org/10.5281/zenodo.16395947
https://doi.org/10.5281/zenodo.16396285
https://doi.org/10.5281/zenodo.16396285
https://doi.org/10.5281/zenodo.16396307
https://doi.org/10.5281/zenodo.16396335
https://doi.org/10.5281/zenodo.16396335

mation Technology, Computer, and Electrical Engineering (ICITACEE).
IEEE, September 2020.

[27] Paul E Black and Paul E Black. Juliet 1.3 test suite: Changes from
1.2. US Department of Commerce, National Institute of Standards and
Technology, 2018.

[28] Dongjun Youn, Sungho Lee, and Sukyoung Ryu. Declarative static
analysis for multilingual programs using codeql. Software: Practice
and Experience, 53(7):1472–1495, 2023.

[29] Dominik Harmim, Vladimır Marcin, and Ondrej Pavela. Scalable static
analysis using facebook infer. I, VI-B, 2019.

[30] Clang project Team. Clang static analyzer. Online, 2024. Available:
https://clang-analyzer.llvm.org/.

[31] Yulei Sui, Ding Ye, and Jingling Xue. Static memory leak detection
using full-sparse value-flow analysis. In Proceedings of the 2012
International Symposium on Software Testing and Analysis, pages 254–
264, 2012.

[32] Yixin Yang, Ming Wen, Xiang Gao, Yuting Zhang, and Sun Hailong. Re-
ducing false positives of static bug detectors through code representation
learning. In International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2024.

[33] Istehad Chowdhury and Mohammad Zulkernine. Using complexity,
coupling, and cohesion metrics as early indicators of vulnerabilities.
Journal of Systems Architecture, 57(3):294–313, 2011.

[34] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas
Zeller. Predicting vulnerable software components. In Proceedings of
the 14th ACM conference on Computer and communications security,
pages 529–540, 2007.

[35] Riccardo Scandariato, James Walden, Aram Hovsepyan, and Wouter
Joosen. Predicting vulnerable software components via text mining.
IEEE Transactions on Software Engineering, 40(10):993–1006, 2014.

[36] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale software code. IEEE
Transactions on software Engineering, 32(3):176–192, 2006.

[37] Viet Hung Nguyen and Le Minh Sang Tran. Predicting vulnerable
software components with dependency graphs. In Proceedings of the
6th international workshop on security measurements and metrics, pages
1–8, 2010.

[38] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. Generalized
vulnerability extrapolation using abstract syntax trees. In Proceedings of
the 28th Annual Computer Security Applications Conference, ACSAC
’12. ACM, December 2012.

[39] Nam H Pham, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N
Nguyen. Detection of recurring software vulnerabilities. In Proceedings
of the 25th IEEE/ACM International Conference on Automated Software
Engineering, pages 447–456, 2010.

[40] Jingyue Li and Michael D Ernst. Cbcd: Cloned buggy code detector.
In 2012 34th International Conference on Software Engineering (ICSE),
pages 310–320. IEEE, 2012.

[41] Vincent Hendryanto Halim and Yudistira Dwi Wardhana Asnar. Static
code analyzer for detecting web application vulnerability using control
flow graphs. In 2019 International Conference on Data and Software
Engineering (ICoDSE). IEEE, November 2019.

[42] Samuel Bates and Susan Horwitz. Incremental program testing using
program dependence graphs. In Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
384–396, 1993.

[43] Yulei Sui, Ding Ye, and Jingling Xue. Detecting memory leaks statically
with full-sparse value-flow analysis. IEEE Transactions on Software
Engineering, 40(2):107–122, 2014.

[44] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th international conference
on compiler construction, pages 265–266, 2016.

[45] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. Practical
memory leak detection using guarded value-flow analysis. In Proceed-
ings of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 480–491, 2007.

[46] Jisheng Zhao, Michael G Burke, and Vivek Sarkar. Parallel sparse flow-
sensitive points-to analysis. In Proceedings of the 27th International
Conference on Compiler Construction, pages 59–70, 2018.

[47] Maria Christakis, Peter Müller, and Valentin Wüstholz. Guiding dynamic
symbolic execution toward unverified program executions. In Proceed-
ings of the 38th International Conference on Software Engineering,
pages 144–155, 2016.

[48] Silvio Ranise and Cesare Tinelli. Satisfiability modulo theories. Trends
and Controversies-IEEE Intelligent Systems Magazine, 21(6):71–81,
2006.

[49] Dong Chen, Yang Zhang, Liang Cheng, Yi Deng, and Xiaoshan Sun.
Heuristic path pruning algorithm based on error handling pattern recog-
nition in detecting vulnerability. In 2013 IEEE 37th Annual Computer
Software and Applications Conference Workshops, pages 95–100. IEEE,
2013.

[50] Xin-Cheng Wen, Cuiyun Gao, Shuzheng Gao, Yang Xiao, and Michael R
Lyu. Scale: Constructing structured natural language comment trees
for software vulnerability detection. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
pages 235–247, 2024.

[51] Yutao Hu, Suyuan Wang, Wenke Li, Junru Peng, Yueming Wu, Deqing
Zou, and Hai Jin. Interpreters for gnn-based vulnerability detection: Are
we there yet? In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 1407–1419, 2023.

[52] Rongcun Wang, Senlei Xu, Yuan Tian, Xingyu Ji, Xiaobing Sun, and
Shujuang Jiang. Scl-cvd: Supervised contrastive learning for code
vulnerability detection via graphcodebert. Computers & Security,
145:103994, 2024.

[53] Guilong Lu, Xiaolin Ju, Xiang Chen, Wenlong Pei, and Zhilong Cai.
Grace: Empowering llm-based software vulnerability detection with
graph structure and in-context learning. Journal of Systems and Software,
212:112031, 2024.

[54] Yixin Yang, Bowen Xu, Xiang Gao, and Hailong Sun. Context-enhanced
vulnerability detection based on large language model. March 2025.
arXiv:2504.16877 [cs.SE].

https://clang-analyzer.llvm.org/

	Introduction
	Methodology
	Workflow of QVoG
	Predicate-based Behavioral Bug Detection
	Simplified Code Property Graph Representation
	Behavioral Bug Detection by Querying S-CPG
	Language-Independent Code Representation
	DSL Translator

	Implementation
	S-CPG Extraction
	Generality of Typestate Modeling

	Evaluation
	RQ1: What is the performance of QVoG in terms of time cost?
	RQ2: How effective is QVoG compared to existing tools on benchmark datasets?
	RQ3: How well does QVoG perform in detecting issues in real-world projects?
	Discussion

	Related Works
	Code Representation for Static Analysis
	Graph-Based bug Detection

	Conclusion
	ACKNOWLEDGMENT
	References

