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Abstract—Large Language Models (LLMs) have shown signif-
icant potential for vulnerability localization in software security.
However, current LLM-based approaches face a critical dilemma:
direct application of general-purpose LLMs lacks crucial domain-
specific expertise, while fine-tuning suffers from limited ro-
bustness when faced with unfamiliar data. These problems
result in subpar performance in vulnerability localization and
weak generalization capabilities. To address these limitations,
we introduce ENVUL, a novel domain adaptation framework
for vulnerability localization. ENVUL improves vulnerability
localization by synergizing enhanced task-specific tuning with
prompt engineering of general-purpose LLMs. ENVUL incor-
porates three key innovations for addressing two problems:
(1) how to optimize fine-tuning for localization task, and (2)
when to wisely choose tuning and prompting. To solve the first
problem, we introduce: (a). a context Consolidator that cap-
tures rich statement-level code semantic, improving the model’s
understanding of code context; (b). a semantic Indicator em-
ploying attention rectification to highlight patterns indicative of
vulnerabilities, focusing the model on critical security signals.
To solve the second problem, we introduce a dynamic routing
mechanism based on joint-representation similarity analysis that
strategically delegates tasks between the fine-tuned model and the
general LLM. It ensures ENVUL’s robust performance across
diverse real-world vulnerability types. Real-world evaluations
demonstrate ENVUL’s robust expertise in outperforming state-
of-the-art vulnerability localization baselines, achieving absolute
improvements of 22.7%-30.3% in top-1 accuracy. Notably, EN-
VUL exhibits exceptional generalization, achieving 43.6%-50%
higher accuracy on unfamiliar vulnerability types.

Index Terms—Software Vulnerability, Vulnerability Localiza-
tion, Large Language Model, Domain Analysis.

I. INTRODUCTION

Accurate vulnerability localization is essential for effective
remediation, driving the need for automated techniques. The
increasing prevalence of disclosed vulnerabilities, highlighted
by academic [1]–[12] and industrial efforts [13], [14], under-
scores the urgency of advanced solutions. Large Language
Models (LLMs), such as Claude-3.5 [15], GPT-4o [16], and
Codellama [17], have emerged as a promising avenue. LLM-
based vulnerability localization is mainly divided into two cat-
egories: fine-tuning and prompting. Fine-tuning technique [7],
[18], [19] utilizes vulnerability data to adapt models for vulner-
ability localization. Prompt engineering [20], [21] guides LLM
via task-specific prompts to identify the vulnerability location
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in given inputs. However, these LLM-based approaches still
suffer from several limitations.

• Prompt Engineering with Limited Domain Expertise
General-purpose LLMs, such as GPT-4o [16] and Claude-
3.5 sonnet [15], demonstrate significant versatility in han-
dling a wide range of tasks, including vulnerability local-
ization. However, these models lack the domain-specific
expertise required for high accuracy in specialized tasks like
vulnerability detection. Consequently, their performance in
vulnerability localization often falls short of that achieved
by fine-tuned models.

• Fine-tuning with Narrow Knowledge and Insufficient
Semantic To address the domain expertise gap in general-
purpose LLMs, existing methods like [19] fine-tune an
adapter for localization task. While this boosts accuracy
for domain-specific vulnerability, it inadvertently narrows
the model’s knowledge scope on the training dataset. Much
work [22]–[24] has shown that fine-tuned model is prone to
provide overly-confident and wrong responses for inputs that
exceed models’ knowledge scope [25]. Therefore, due to
discrepancies between the training data and real-world sce-
narios, it is infeasible for fine-tuned models to encompass all
vulnerability types. This often leads to the mislocalization
of unfamiliar vulnerabilities. Moreover, the scarcity of com-
prehensive vulnerability data further constrains the breadth
of knowledge acquired by fine-tuned models. From program
analysis perspective, vulnerability localization requires un-
derstanding statement-level program semantics, yet current
approaches lack the ability to comprehend global semantics
at the statement level, hindering accuracy. Furthermore,
existing techniques struggle to discriminate critical intra-
statement code elements, such as the specific integer types
(‘int’, ‘short’) that are central to vulnerabilities like CWE-
190: Integer Overflow or Wraparound.

Although tune-based and prompt-based techniques have
their respective limitations, their characteristics are comple-
mentary. Specifically, fine-tuning techniques can provide the
domain expertise that general LLMs lack, while prompting
methods can address the limited breadth of knowledge in fine-
tuned models. However, realizing this complementary rela-
tionship presents a critical dilemma in practical applications:
how to make an intelligent choice between fine-tuning and
prompting?



To address the aforementioned problems, this paper intro-
duces a novel approach, named ENVUL, to localize vulner-
abilities. The objectives of ENVUL are twofold: 1) enhanc-
ing domain-specific fine-tuning performance in vulnerability
localization tasks. 2) improving the robustness to handle
unfamiliar vulnerabilities by bridging the gap between tuning
and prompting.

First, to improve task-specific fine-tuning performance,
ENVUL integrates a consolidator and a indicator to com-
prehensively represent statement-level semantics. The indica-
tor utilizes an adaptive domain mask for pruning spurious
parametric feature, and an attention rectifier mechanism to
precisely pinpoint and emphasize the underlying vulnerabil-
ity patterns within each statement. The consolidator collects
comprehensive token-level representations for each statement,
explicitly capturing both intra-statement and inter-statement
dependencies. The two modules enable the fine-tuned model
to understand the semantic nuances within and between state-
ments more deeply. However, due to limited training data,
the enhanced fine-tuned model can still produce false posi-
tives when faced with unfamiliar vulnerabilities. Therefore,
to improve the tool’s robustness against seen and unseen
vulnerabilities, ENVUL incorporates a novel dynamic routing
mechanism that coordinates task handling between the fine-
tuned model and the general LLM strategically. It categorizes
vulnerabilities as domain-specific or out-of-domain, and di-
rects domain-specific data to the task-enhanced tuned model to
maximize the precision. Out-of-domain sample is routed to the
general-purpose LLMs to enhance generalizability. Together,
these modules enable ENVUL not only precisely localize
vulnerabilities with domain expertise but also retain robustness
across all types of vulnerabilities.

We evaluate ENVUL on three high quality real-world
datasets: SVEN [26], MegaVul [27], and SafeCoder [28].
Evaluation results show that ENVUL achieves state-of-the-
art performance by increasing the top-1 localization accuracy
by 22.7%-30.3%, and top-5 results by 8.4%-22.7% over the
state-of-the-art tools. Additionally, in experiments focused on
generalization, ENVUL significantly boosts top-1 accuracy by
43.6% and 50.0%.

The contributions of this paper are summarized as follows:

• We propose an approach for practical vulnerability local-
ization. Our approach maximizes the potential of LLMs by
fully leveraging the domain expertise of task-enhanced fine-
tuning and the broad knowledge scope of general LLMs.

• We construct a consolidator to integrate representations
of statement-level vulnerability features, and an indicator
to capture determinative code elements that directly cause
vulnerabilities, thus bolstering the model’s domain-specific
fine-tuning performance.

• We design a dynamic routing mechanism to distinguish
vulnerabilities, enabling fine-tuned models to accurately
localize vulnerabilities based on domain expert knowledge.
Simultaneously, general models handle scenarios beyond the
scope of this domain knowledge to bolster generalizability.

static int hq_decode_block(HQContext *c, GetBitContext *gb,
int16_t block[64], int qsel, int is_chroma, int is_hqa)
{

const int32_t *q;
int val, pos = 1;
memset(block, 0, 64 * sizeof(*block));
if (!is_hqa){

......
block[0] = get_sbits(gb, 9) * 64;} //located by SOTA

tool
for (;;) {

......
if (pos >= 64) //located by Claude-3.5-sonnet

break;

block[ff_zigzag_direct[pos]] =
(ff_hq_ac_syms[val] * q[pos]) » 12; //located by
ENVUL
pos++;}

return 0;}

Fig. 1: The localization results by ENVUL.

• We implement above methods as a tool called ENVUL.
Evaluation results on real-world benchmarks show that EN-
VUL achieves state-of-the-art performance in both accuracy
and generalizability, and further experiments validate the
effectiveness of each component. We make our implementa-
tion open available at https://github.com/TwT23333/ENVUL

II. MOTIVATION

In this section, we present our motivation using several real-
world examples.

A. Fine-tuning with comprehensive semantic

The challenge of vulnerability localization entails pinpoint-
ing vulnerabilities within code statements. It requires analyz-
ing a vulnerable code, denoted as S, and producing output
that directly corresponds to, or strongly correlates with, the
vulnerabilities. Specifically, given a set of code statements
S = {s1, . . . , sn}, where si denotes the i-th line of code,
the objective is to identify a subset {si, . . . , sk} ⊂ S causing
the vulnerability. Figure 1 depicts a vulnerable code snippet,
which is used to decode a block in High-Quality (HQ) video
encoding. A negative overflow vulnerability occurs because
the multiplication at line 12 may cause integer overflow.
Specifically, the type of q[pos] is set to int32_t instead
of unsigned, which can result in potential negative values
during multiplication operations, thereby leading to integer
overflow.

To localize the vulnerable position, it is important to con-
sider the semantics of all the code tokens within a state-
ment. This is because each element in the code, including
ff_hq_ac_syms[val], q[pos], their types, and the bit-
wise shift operation, are closely related to the root cause of the
vulnerability. Moreover, to locate this integer overflow issue,
it is essential to understand that the vulnerability is caused
by q[pos], rather than other code tokens. Therefore, we
need to identify this critical information within the statement.
Unfortunately, the existing SOTA tuning-based and prompt-
based methods, LLMAO [19] and Claude-3.5-sonnet fail to
localize the vulnerability. Specifically, LLMAO determines

https://github.com/TwT23333/ENVUL


static rt_ssize_t frame_send(struct rt_link_frame *frame){
rt_size_t length = 0;
rt_uint8_t *data = RT_NULL;
rt_memset(rt_link_scb->sendbuffer, 0, sizeof(rt_link_scb

->sendbuffer));
data = rt_link_scb->sendbuffer;
length = RT_LINK_HEAD_LENGTH;
length += frame->data_len;
frame->head.length = frame->data_len;//located by tuned

model
rt_memcpy(data, &frame->head, RT_LINK_HEAD_LENGTH);
data = data + RT_LINK_HEAD_LENGTH;
if (frame->attribute == RT_LINK_SHORT_DATA_FRAME || frame

->attribute == RT_LINK_LONG_DATA_FRAME) {

rt_memcpy(data, frame->real_data,
frame->data_len); //located by Claude-3.5-sonnet

data = data + frame->data_len;}
return rt_link_hw_send(rt_link_scb->sendbuffer, length);}

(1) The localization results of unfamiliar example

(2) Distribution of unfamiliar example and SVEN dataset
Fig. 2: Examples of localization and unfamiliar cases

line 7 to be vulnerable, and Claude-3.5-sonnet incorrectly
assumes that the condition check in line 10 is improper.

The causes of mislocalization can be attributed to
two aspects: (1) Fine-tune-based approaches lack enhanced
statement-level semantic understanding specifically tailored
for vulnerability localization tasks. For example, LLMAO
considers only newline tokens as the semantic features of each
statement, but these account for only a minimal portion of
the overall statement’s semantics. (2) Prompt-based methods,
while leveraging a general LLM, lack specialized vulnerability
domain knowledge, leading to errorous results.

In contrast, ENVUL takes into account the deep semantics
of all code token with a statement, which enable it to learn
the more comprehensive statement-level semantics, i.e., the
dependency between q[pos] at line 12 and q’s definition
at line 2. Then, ENVUL highlights q[pos] as the determi-
native element of the statement building upon, and considers
it as the key information. Therefore, ENVUL can consider
the information of the entire statement comprehensively and
ultimately localize the correct vulnerable statement.

B. Wisely choose tuning and prompting

The fine-tuned model performs exceptionally well on fa-
miliar data. However, what will happen when it encounters a
vulnerability it has never seen before?

Figure 2 (1) displays a recent vulnerability in the RT-
Thread project, designated as CVE-2024-25395. The flaw
occurs at line 12, where a potential buffer overflow arises when
frame->data_len>1020. We first train our enhanced
fine-tuned model on the SVEN dataset and then use it to
locate the vulnerability. However, it still fails to pinpoint the
exact location of the vulnerability. To explain this, we first
visualize the distribution of the vulnerability data alongside
the data in the SVEN dataset, as shown in figure 2 (2). It is
evident that the vulnerability lies outside the distribution of
the training dataset. In other words, the fine-tuned model has
never encountered this type of data before, making it unable
to accurately locate the unfamiliar vulnerabilities. However,
although Claude-3.5-sonnet previously produced incorrect lo-
calization results in the first example, it can still identify this
vulnerability by leveraging its extensive knowledge of code.
Therefore, relying only on fine-tuned model or a general LLM
is insufficient to handle all scenarios effectively.

To address this issue, ENVUL adopts a dynamic domain
routing mechanism to effectively route different types of
vulnerabilities. For vulnerabilities within the knowledge scope
of the dataset, it directs them to the fine-tuned model for
localization, maximizing the use of domain-specific knowl-
edge. For unfamiliar vulnerabilities, it leverages a prompt-
based approach to utilize general LLM, taking advantage of
its extensive code knowledge. This complementary strategy
mitigates the risk of incorrect localization by the fine-tuned
model and enhances generalization of the tool, making EN-
VUL a practical vulnerability localization expert.

III. METHODOLOGY

In this section, we present the core idea of ENVUL and
provide a detailed explanation of the proposed approach for
vulnerability localization, which consists of two components:
1) task-enhanced fine-tuning and 2) dynamic routing mecha-
nism.

Figure 3 shows the overall framework of the proposed
approach. ENVUL works as follows: 1) In the task-enhanced
fine-tuning phase, consolidator integrates all code element
information of a single statement, while indicator identifies
key code elements determining whether the statement contains
a vulnerability. 2) During the inference phase, the dynamic
domain routing mechanism evaluates whether the fine-tuned
model is familiar with the vulnerability. This is achieved by
analyzing the representations of the training dataset with joint-
representation similarity analysis. Based on this evaluation,
the mechanism guides ENVUL to either take advantage of the
task-enhanced fine-tuned model for localization or fall back
on a general LLM with its broad code knowledge, ensuring
optimal accuracy and robustness.
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1 int main(){ 
2 char buffer[10]; 
3 strcpy(buffer, 
"longlong string");  
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5 return 0;}
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"longlong string");  
4 printf("%s\n",
buffer); 
5 return 0;}

Fig. 3: Overall framework of ENVUL

A. Task-Enhanced Fine-tuning

This section describes how ENVUL enhances performance
of fine-tuning by using Consolidator and Indicator designed
for the vulnerability localization task.

Data Preprocessing. Given a function S with N statements
of line level, ENVUL tokenizes and processes it through an
LLM, obtaining hidden states L ∈ Rl×n×d, where l, n, and
d represent the number of layers, tokens, and embedding
dimensions, respectively. Following insights from prior re-
search [29], we select hidden states from the penultimate layer
L̂ ∈ Rn×d due to their rich semantic representation.

To map tokens to their corresponding statements, we utilize
newline tokens as delimiters. Unlike previous methods that
capture only a single token per line, ENVUL retains up to
p = 64 token embeddings per statement. This choice covers
96% of real-world cases observed in our dataset. Padding is
applied to ensure uniform dimensions across statements, thus
optimizing computational efficiency. Consequently, we obtain
statement-level representations as:

S = [s1, s2, . . . , sN ], si ∈ Rp×d, ∀i ∈ {1, . . . , N}

These representations serve as the basis for further semantic
enrichment via the consolidator and indicator modules, which
extract deeper, task-specific insights from each statement.

Consolidator. After acquiring S, ENVUL aggregates code
features at the statement level. To effectively capture con-
textual dependencies among code elements, we design a
context-aware module using a bidirectional attention mech-
anism. Specifically, token embeddings si are first processed
by a bidirectional attention layer and subsequently refined
by an indicator module (Section III-A), formulated as: ĥi =
fθl(hi) = fθl(fθt(si)), where θt and θl denote parameters

of the attention and indicator layers, respectively, and f
represents the corresponding transformation functions. After
encoding, ENVUL applies average pooling: gi = 1

p

∑p
j=1 ĥ

j
i

thus deriving aggregated statement-level representations:

G = [g1, g2, . . . , gN ], gi ∈ R1×d, ∀i ∈ {1, . . . , N}.

Since vulnerabilities often involve interactions spanning
multiple statements, we introduce an inter-statement encoder
based on a lightweight Transformer architecture [30] to model
cross-statement influences: Ĝ = Transformer(G).

We adopt this simplified Transformer structure for two
primary reasons. First, given the limited vulnerability-labeled
data, a compact model mitigates the risk of overfitting. Second,
its lightweight design significantly enhances computational
efficiency during the fine-tuning stage.

Indicator. While the aggregation module integrates
statement-level global semantics, indicator pinpoints crucial
vulnerability patterns by reducing irrelevant code elements
that hinder accurate vulnerability localization. The indicator
first applies a self-adaptive domain mask on tokens’ hidden
state to select the most determinative vulnerable feature. Then,
it identifies the determinative vulnerable tokens based on the
computed weights through attention rectification.

a) Determinative Vulnerable Feature Selection
Parametrically, code language model learns patterns be-

tween numerical values to identify features that cause vulnera-
bilities. However, due to the inherent complexity of code, such
as the same identifiers with ambiguous meanings, the model
tends to learn many spurious features. This results in output
vectors containing numerous redundant values. Therefore, we
design a self-adaptive domain mask to identify and prune these
spurious features. For the hidden state of a token ski , i.e., k-
th token in the i-th line, it is first passed to a learnable self-



adaptive mask mf to filter out spurious features while retaining
determinative features. The learnable mask mf = w ⊙ q
consists of binary values, where q is the pruning template, ob-
tained through a unit step function q = step(|hk

i |−t), in which

step(v) =

{
0 if v < 0

1 if v ≥ 0
and t ∈ Rq×d is trainable threshold

vector for pruning. Moreover, a set of trainable weights w is
used to endow mf with adaptive learning capability, allowing
it to learn the valid vulnerability features from the training set.
By performing element-wise multiplication hk

i = ski ⊙mf , the
zero elements of mf effectively eliminate the spurious features
in the token embeddings ski . In contrast, the non-zero elements
of m highlight the key features.

b) Determinative Vulnerable Token Selection
After pruning the spurious features of each code token in

the previous step, this step aims to eliminate irrelevant code
elements and highlight the elements associated with vulner-
abilities. For instance, in ‘sprintf(buffer, "Number:
%d", number);’, the actual cause of the vulnerability is
the size of number exceeding the memory length of buffer.
However, during the learning process, the model may incor-
rectly identify all instances of sprintf as vulnerabilities
due to its higher frequency of occurrence. Therefore, it is
necessary to suppress code tokens that are not related to the
vulnerability. For the feature representation hi obtained in the
previous step, we use it as the key vector and the learned mask
vector mt as the query vector to compute the attention scores
scorei = mth

T
i , where mt is obtained through learning

determinative features. The score represents the relationship
between each token and the mask, indicating the degree of
each token’s association with the vulnerability-specific knowl-
edge. Note that we set only one mask for each vulnerability,
which represents the domain-specific features.These scores
represent the contribution of each token in the statement
to the vulnerability. We multiply the score by the features:
ĥi = score · hi. Here, we obtain the token representations
most relevant to the vulnerability, i.e., highlighted tokens.

Fine-Tuning Process. During the fine-tuning stage, we
freeze the parameters of the backbone model and fine-
tune trainable Consolidator and Indicator as an adapter. In
statement-level vulnerability localization, the number of state-
ments with vulnerabilities is much smaller than that of normal
statements. Hence, we train ENVUL using FocalLoss. Fo-
calLoss helps alleviate the class imbalance issue caused by
this phenomenon, accelerating model training and enhancing
generalization capability. Specifically, focal loss is defined as
follows:

FocalLoss(pt) = −αt(1− pt)
γ log(pt)

in which pt is the model’s prediction probability for the
correct label. αt balances class importance, and γ, the focusing
parameter, reduces weight for easy samples and increases it
for difficult ones. We adopt CodeLlama-7B as our backbone
model due to its moderate scale for practical deployment and
strong performance on code related tasks.

B. Dynamic Domain Routing for Practical Localization

In this section, we present the algorithm of the dynamic
domain routing mechanism and demonstrate how to use it to
enhance vulnerability localization.

Algorithm 1: Dynamic Domain Routing Mechanism

/* Training Phase */
1 Input: Backbone model feature and Tuned model

feature from vulnerable statements
S = {s1, s2, . . . , sn};
G = [g1, g2, . . . , gN ], gi ∈ R1×d,∀i ∈ {1, . . . , N};

2 IDbone ← {}; IDft ← {} ;
3 for i = 1 to n do
4 s̄i =

1
p

∑p
j=1 s

j
i ;

5 s̄norm
i ← s̄i/s∥s̄i∥2;

6 IDbone[i]← s̄norm
i ;

7 gnorm
i ← gi/∥gi∥2;

8 IDft[i]← gnorm
i ;

/* Inference Phase */
9 Input: Backbone model feature and Tuned model

feature of the statement with the highest probability
of being vulnerable stest, gtest; In-distribution dataset
IDbone, IDft.

10 s̄test =
1
p

∑p
j=1 s

j
test;

11 s̄norm
test ← s̄test/∥s̄test∥2;

12 gnorm
test ← gtest/∥gtest∥2;

13 Dbone ← {};Dft ← {};
14 for i = 1 to n do
15 idbone

i ← ID
(i)
bone; idft

i ← ID
(i)
ft ;

16 dbone
i = ∥s̄norm

test − idbone
i ∥2;

17 dft
i = ∥gnorm

test − idft
i ∥2;

18 Dbone ← dbone
i ;Dft ← dft

i ;

19 Dbone ← Sort(Dbone);Dft ← Sort(Dft);
20 Output:The decision whether the k-th smallest

distance exceeds the threshold λ, i.e., output 1 if
D

(k)
bone ≥ λ ∧D

(k)
ft ≥ λ, otherwise 0.

Algorithm. The goal of the dynamic domain routing mech-
anism is to identify the code that falls outside the knowledge
scope of the fine-tuned model, hence avoiding it producing
false positives for unknown vulnerabilities. Algorithm 1 details
our dynamic domain routing mechanism. We implement it
based on joint-representation similarity analysis. Specifically,
we perform routing by jointly leveraging features from the
backbone model’s penultimate layer and statement-level repre-
sentations from the fine-tuned model(line 1). The outputs pro-
duced by the backbone model contain broader code semantic
information due to its nature of pre-training on a large corpus
of code, while the features of fine-tuned model encapsulate
more specific vulnerability characteristics. In training phase,
ENVUL ascertains the distribution of the training data (line 2),
i.e., known data, which will be utilized in subsequent domain
analysis. For every statement representation si produced by



LLM, ENVUL initially computes the average of its token
features, yielding s̄ (line 5). This averaging process is de-
signed to generate a vector mirroring the shape of gi while
retaining maximal information from si. Subsequently, ENVUL
proceeds to normalize each feature vector of si. The resultant
normalized vectors serve as the basis for computing similarity
between training and testing data.

In the inference phase, ENVUL utilizes the K-nearest neigh-
bors algorithm to determine whether a given code snippet is
out-of-domain. Specifically, ENVUL extracts features from the
statement most confidently identified as vulnerable (line 9).
If this feature significantly deviates from knowledge of the
training set, it indicates an unfamiliar vulnerability. ENVUL
measures similarity between this vector and domain-specific
data by L2 distance(lines 15-19), classifying the sample as
unfamiliar vulnerability if the distance to the k-th nearest
vector exceeds threshold λ (line 20).

Pratical Vulnerability Localization. As described in section
20, we determine whether a vulnerability sample falls outside
the fine-tuned model’s knowledge boundary by calculating
whether its distance from the training set exceeds a predefined
threshold. Then, ENVUL dynamically routes the vulnerabili-
ties based on the detection results.

For domain-specific vulnerabilities, since they fall within
the knowledge scope of our enhanced fine-tuning model, we
directly use it to localize vulnerabilities. ENVUL outputs a
probability of containing a vulnerability for each statement,
and then we sort these probabilities in descending order,
selecting the top-N statements to identify the most likely
vulnerable positions. For out-of-domain instances, which are
unknown by fine-tuned model, ENVUL will hand them over
to general LLM with chain-of-thought prompt for further
localization.

Prompt: Analyze the following code for security
vulnerabilities and provide your findings in a struc-
tured JSON format. The response must contain:
"Functionality" (a concise description of what
the code does) and "Vulnerabilities" (an ar-
ray of objects, each containing "line" (the vul-
nerable line number), "suspicious" (rated high-
/medium/low) and "description" (what makes it
vulnerable). Identify up to five most critical issues,
explaining your reasoning for each.

Fig. 4: Simplified Chain-of-Thought Prompt

IV. EXPERIMENT

In this section, we evaluate ENVUL’s performance on
vulnerability localization. The goal of our experiment is to
answer the following research questions:
• RQ1: Compared to state-of-the-art approaches, how effec-

tive is ENVUL in localizing vulnerabilities?

• RQ2: How robust is ENVUL in domain-shift vulnerability
localization scenario?

• RQ3: What are contributions of each component to EN-
VUL’s effectiveness?

• RQ4: How is ENVUL’s adaptability to different general
LLMs?

• RQ5: How is ENVUL’s real-world performance?

A. Configuration

We set the learning rate to 1e-4, with a data dimension
of 4096, and fine-tune ENVUL for 30 epochs, selecting the
checkpoint with the best performance on the validation set.
We set the model’s sampling temperature to 0, ensuring that
the model produces the same localization results for the same
vulnerability each time. Due to the varying number of lines N
per function, the count of statement-level features S obtained
also varies, leading to a dynamic batch size.

All the experiments are conducted on a device with 64 cores
of 2.3GHz CPU, 128GB RAM, NVIDIA Ampere A100 GPUs,
and 40 GB memory. The operating system is Ubuntu 20.04.

B. Dataset and Metrics

To investigate ENVUL’s effectiveness on real-world vul-
nerability localization, we select three real-world vulnerability
datasets.
• A multilingual dataset used by SVEN [26] is collected

from real-world vulnerability projects and datasets. Each
vulnerability is certified by humans to ensure correctness.
All vulnerability locations are manually analyzed by experts
to identify their root cause. We choose to use SVEN because
it has the highest vulnerability statement labeling accuracy
among the commonly used vulnerability datasets [31]. It has
803 manually inspected samples.

• MegaVul [27] is a benchmark curated from several Git
web hosting services. It filters high-quality vulnerabilities
through multiple heuristic methods and utilizes Abstract
Syntax Tree and Program Dependency Graph analysis to
extract vulnerability-related functions. The dataset contains
169 unique CWE IDs and 8254 CVE IDs.

• Safecoder [28] is a high quality vulnerability dataset that
contains 16 CWE types. It is crawled from over 145 million
commits from public GitHub projects, and each vulnerabil-
ity and corresponding location are validated by both manual
inspection and static analysis tools. It contains 1211 human-
checked vulnerabilities.

According to the study of [31], BigVul [32], Devign [33], and
CVEfixes [34] have high number of noises or very low labeling
accuracy. Therefore, we choose not to use these datasets.

We employ ten-fold cross-validation to evaluate the per-
formance of ENVUL and the baselines, following the same
setting of previous defect localization tools [19], [35]. Note
that there is a minor distribution overlap among the three
datasets, which will be discussed and tested in RQ2.

In practical applications, developers typically focus on the
top results from tools. Hence, we adopt TOP-N as our exper-
imental evaluation metric, aligning with what state-of-the-art



tools commonly use [19], [36]. TOP-N measures a model’s
localization capability by calculating if at least one of the
model’s top N predicted lines of code matches the ground
truth. In this paper, we select top-1, top-3, and top-5 as our
evaluation metrics.

C. RQ1.Effectiveness

In this research question, we evaluate the effectiveness of
ENVUL on vulnerability localization.

Setting. To evaluate the performance of the ENVUL, we
chose UnixCoder [37], LineVD [1], LineVul [18], Claude3.5
sonnet-CoT, DeepSeek-R1 [38], Codellama (fine-tune and
CoT) and LLAMO [19] as baselines.
• UnixCoder is a code language model specifically de-

signed for understanding code. It leverages Abstract-Syntax-
Tree(AST) based pre-training to improve its ability to cap-
ture semantic representations.

• LineVD is an advanced vulnerability localization tool that
leverages graph neural network to learn representation from
Program Dependence Graph(PDG).

• LineVul is a widely used tool that utilizes attention mecha-
nisms within the BERT architecture [39] to predict line-level
vulnerability.

• Claude3.5 sonnet [40] is currently one of the most ad-
vanced large language models for program understanding.
Since it is a closed-source model, we cannot access its
output feature vectors. Therefore, we utilize its API with
a chain-of-thought prompt.

• DeepSeek-R1 is a reasoning model enhanced through rein-
forcement learning, which is excellent in coding tasks. We
also use its API for evaluation.

• For CodeLlama-7B, we adopt two experimental settings:
fine-tune and CoT. For the former, we extract only the
newline token’s hidden state as its feature representation,
then fine-tune a single-layer fully connected network as the
prediction model to output the probability of the statement
being vulnerable. For CoT, we directly use the pre-trained
model and employ the same prompt as described in section
20. This aims to evaluate the effectiveness of our enhanced
fine-tuning model and the zero-shot handling capability of
CodeLlama as a general LLM.

• LLMAO is the state-of-the-art vulnerability localization
tool, which employs a large language model and freezes
its weight, and fine-tunes an additional adapter to predict
vulnerability with the LLM feature of the newline token
produced before. The original paper for LLMAO uses
CodeGen-16B as the backbone, and we reimplement it with
CodeLlama-7B to maintain the same settings as our tool.
Results. Tabel I shows the results of baselines and ENVUL.

Our tool demonstrates superior performance over all other
tools across three datasets. Furthermore, compared with state-
of-the-art tools, our model outperforms LLMAO in top-1
accuracy on the SVEN, MegaVul, and SafeCoder datasets,
with increases of 30.32%, 22.71%, and 25.97% respectively.
Additionally, the top-3 accuracy rates increase by 25.01%,
12.44%, and 13.72%, respectively, while the top-5 accuracy

rates improve by 22.70%, 13.72%, and 8.40%. The experi-
mental results can be attributed to the deep semantic repre-
sentation of code provided by the consolidator and indicator.
Moreover, our domain routing mechanism enables ENVUL to
handle unfamiliar data, thereby improving the performance of
vulnerability localization.

Although ENVUL achieves progressive results, the perfor-
mance of our tool is inconsistent across different datasets.
After analyzing the datasets, we identify the following reasons.
First, the SVEN dataset, which is a multilingual dataset and
each vulnerability is manually certified by human experts,
contains the most diverse types and languages of vulner-
abilities and has more complex features. Hence, our tool
performs moderately on this dataset. Second, compared to
SVEN, the SafeCoder dataset is verified by static analysis
tools(i.e., CodeQL) and humans. Static analysis tools often
rely on manually crafted rules, which tend to result in a
consistent range of detected vulnerabilities, making it easier
for the model to learn their characteristics, thus our tool shows
the best performance on this dataset. Last, MegaVul design an
automated crawling method with multiple heuristics. Although
this approach improves label accuracy, it still contains incor-
rectly labeled vulnerabilities. Therefore, it is challenging for
ENVUL to learn the features correctly, resulting in perfor-
mance degradation on this dataset.

Moreover, to evaluate performance in practical vulnerability
localization scenarios, we evaluate ENVUL’s accuracy in lo-
calizing the Top-25 most dangerous CWEs with Top-5 metric.
We select vulnerability types that appear multiple times in the
datasets. As shown in Table II, ENVUL’s accuracy in local-
izing the Top-25 most dangerous CWEs ranges from 76% to
100%, with an average accuracy reaching 91%. This validates
the practical utility of our tool in real-world applications.

RQ1 Answer: Benefiting from Consolidator and In-
dicator for enhancing the deep semantic information
during fine-tuning and Dynamic Routing for improving
out-of-domain capability, ENVUL achieves a 22.71% -
30.32% enhancement on Top-1 over the SOTA baseline
in real-world datasets.

D. RQ2.Robustness Under Domain-shift Scenario

In this research question, we first clarify the differences in
dataset distributions, and then, based on this understanding, we
evaluate ENVUL’s generalization capabilities. Additionally,
we test the ability of the routing mechanism to detect out-of-
domain samples and its contribution to improving the accuracy
of vulnerability localization.

1) Localization Performance Under Domain-shift
Dataset shift and Setting. Before addressing this research

question, we first examine the distribution differences between
datasets. We use t-SNE [41] for data visualization. In Figures
5, red represents the SVEN training set, while blue and red
represent the SafeCoder and MegaVul test sets, respectively.
The figures show partial overlap between SVEN and Safe-



TABLE I: (RQ1) Performance of ENVUL of real-world datasets and comparison with the baseline

Tool SVEN MegaVul SafeCoder
TOP-1 TOP-3 TOP-5 TOP-1 TOP-3 TOP-5 TOP-1 TOP-3 TOP-5

CoT
CodeLlamaCoT 26.46% 36.76% 39.70% 28.02% 43.84% 49.07% 42.86% 54.75% 64.24%
DeepSeek-R1 37.29% 48.85% 56.81% 40.35% 55.79% 65.88% 48.39% 62.18% 70.52%
Claude3.5 sonnet 33.81% 42.65% 54.41% 33.25% 54.30% 61.39% 47.56% 59.45% 64.66%

GNN LineVD 31.09% 41.85% 56.43% 34.25% 51.81% 60.52% 45.09% 56.65% 63.83%
AST UnixCoder 38.24% 52.93% 59.63% 47.32% 57.78% 71.86% 49.96% 61.85% 69.03%

FT
LineVul 44.11% 55.88% 61.75% 45.58% 56.04% 68.37% 52.35% 59.45% 66.64%
CodeLlamaFT 36.76% 44.11% 51.47% 38.48% 49.07% 59.53% 47.56% 57.06% 64.85%
LLMAO 48.52% 58.82% 64.71% 54.30% 70.11% 77.09% 64.24% 71.35% 85.63%

FT&CoT ENVUL 63.23% 73.53% 79.40% 66.63% 78.83% 87.67% 80.92% 90.42% 92.82%

(a) Near-shift: SVEN vs SafeCoder (b) Far-shift: SVEN vs MegaVul

Fig. 5: Differences in distribution among various real-world datasets

Rank CWE Type Name Acc

1 CWE-079 Cross-site Scripting 87%
2 CWE-787 Out-of-bounds Write 97%
3 CWE-089 SQL Injection 76%
4 CWE-020 Improper Input Validation 90%
5 CWE-022 Path Traversal 87%
6 CWE-125 Out-of-bounds Read 93%
8 CWE-416 Use After Free 100%
13 CWE-077 Command Injection 85%
17 CWE-200 Exposure of Sensitive Info 95%
20 CWE-119 Buffer Overflow 91%
23 CWE-190 Integer Overflow 95%

TOTAL 91%

TABLE II: CWE TPR Proportion Table

Coder, with some shifts, whereas SVEN and MegaVul have
almost no overlap. Previous Figure 5 examined the situation
from the perspective of data scale. Moreover, from a dataset
collection viewpoint, since SVEN and SafeCoder may utilize
similar projects or datasets during their construction, their

distributions are quite similar. In contrast, the data collection
process of MegaVul is automated and the crawled projects are
different. Therefore, it differs significantly from SVEN.

Consequently, we categorize SafeCoder as a near-shift
dataset, where a segment of the distribution shifts relative to
the source set, and MegaVul as a far-shift dataset, where the
majority of the data has shifted, displaying minimal overlap
with the source set. Thus, we aim to test ENVUL’s general-
ization ability on programs to simulate scenarios in which the
training data differs significantly from real-world application
contexts. We train ENVUL using SVEN and then evaluate its
effectiveness on the near-shift and far-shift datasets.

TABLE III: (RQ2) ENVUL’s Capability on Shifted Datasets

Tool
Setting Near-shift Far-shift

TOP-1 TOP-3 TOP-5 TOP-1 TOP-3 TOP-5
LLMAO 35.71% 59.52% 73.81% 31.58% 52.63% 61.40%
ENVUL 51.26% 71.96% 83.74% 47.37% 63.16% 69.63%

Results. Table III shows the experimental results on the
near-shift dataset and far-shift dataset. For the near-shift
dataset, ENVUL achieved improvements of 43.55%, 20.90%,



and 13.45% in top-1, top-3, and top-5 metrics, respectively,
compared to SOTA tool LLMAO, showing stable performance
similar to single-dataset settings in RQ1. On the far-shift
dataset, increases of 50.01%, 20.11%, and 13.40% were noted
in these metrics. Moreover, as shown in Figure III, ENVUL
also achieves significantly improved performance compared to
general LLMs, demonstrating the effectiveness of our routing
mechanism. These results demonstrate ENVUL’s capability to
learn complex semantic features of programs and generalize
across different codes, highlighting our tool’s generalization
ability.

2) Routing Performance Under Domain-shift
Setting. For testing effectiveness of routing mechanism, we

evaluate how many out-of-domain samples our module could
detect under near-shift and far-shift conditions. We computed
the accuracy of domain discrimination as follows:

Accuracy =
Number of correct out-of-domain sample

Total number of predictions

Since there is currently no standardized criterion for distin-
guishing domain-specific data, we treat codes that the model
accurately locates vulnerabilities in as domain-specific sam-
ples.

Results. Table IV presents our experimental outcomes. In
the original setting, the dynamic routing mechanism detected
101 out-of-domain samples and route them to general LLM,
but also mistakenly removes 14 domain-specific samples, with
an accuracy of 88.71%. For near-shift, it routes 68 out-of-
domain samples, achieving an accuracy of 94.44%. In far-shift,
due to minimal dataset overlap, our module performs best,
correctly routing 91 samples, with an accuracy of 97.85%.
These results align with our data visualization in Figure 5,
indicating higher accuracy with greater distribution divergence.

TABLE IV: (RQ2) Performance of Dynamic Routing

Dataset Correct False Acc.
Original 101 15 87.07%

Near-shift 68 4 94.44%
Far-shift 91 2 97.85%

RQ2 Answer: ENVUL exhibits substantial ability in
dynamic routing mechanism and demonstrates supe-
rior localization performance compared to the SOTA
baseline across domain shifts, showcasing its robust
generalization capabilities.

E. RQ3.Ablation study

We conduct an ablation study to assess the contribution of
each component in ENVUL. The result is shown in Table V.

Setting. We evaluate ENVUL with the following setting.
• Plain LLM. First, we remove all components to test the

effectiveness of directly localizing vulnerabilities with the
pre-trained. We utilize CodeLlama-7B in this experiment,

which is base LLM in ENVUL. We follow the setup
described in RQ1.

• w/o Consolidator. To measure the impact of the consolidator,
we remove it and average tokens’ hidden state of each state-
ment to simulate the consolidator without the component.

• w/o Indicator. To prove the effectiveness of the indicator,
we directly remove it for making subsequent predictions.

• only Fine-Tune. To test the performance of the routing
mechanism, we removed it and the subsequent general LLM,
using only the enhanced fine-tuned model to handle all
vulnerabilities.

Results. Table V Row 1 and Row 2 show the results, only
using prompt or regular fine-tuning results in a significant
performance drop. In contrast, ENVUL’s performance on top-
1 localization improved by 138.91%, 137.51%, and 88.87%
across three datasets, which demonstrates that the usefulness
of ENVUL is not solely due to the LLM’s understanding of
code semantics but significantly to the contributions of other
components.

The results are displayed in Table V Row 2. Compared
to removing consolidator, ENVUL shows significant improve-
ment on all three datasets. Specifically, the top-1 localization
accuracy increases by 7.51%, 15.17%, and 9.67%, respec-
tively. Similarly, the top-3 and top-5 localization accuracy
also rise considerably, indicating the substantial contribution
of the consolidator to the overall performance. Note that the
localization performance of simply averaging hidden states of
a statement is even worse than LLMAO, which just extracts
one hidden state per line. This further validates that without ap-
propriate consolidator of statement-level information prevents
the representation of viable features.

Table V Row 3 presents the results. With the enhancement
from the indicator architecture, the localization performance
dropped by 2.40%, 5.56%, and 3.03% on top-1, respectively.
This reflects the indicator’s strength in recognizing determina-
tive vulnerability features and making ENVUL more robust.

As shown in Table V, compared to only fine-tuning, EN-
VUL achieves improvements in the top-1 metric by 10.27%,
8.58%, and 6.25%, in the top-3 metric by 8.69%, 7.15%,
and 2.70%, and top-5 metric by 10.20%, 11.11%, and 1.54%.
This demonstrates that our routing mechanism complements
the fine-tuned model and general LLM, thereby enhancing the
overall capability of the tool.

We also investigate ENVUL’s hyperparameter sensitivity,
i.e., λ. In real-world scenarios, prior access to out-of-domain
vulnerabilities is unavailable, rendering the learning of adap-
tive thresholds impossible. Therefore, we establish a decision
boundary by setting a lambda threshold(λ=0.97) to effectively
distinguishing out-of-domain vulnerabilities while preventing
overfitting to domain-specific samples. We conduct an sensi-
tivity analysis, adopting the settings from RQ2 and using Top-
3 accuracy as the evaluation metric. As shown in Table VI,
ENVul performs optimally with λ=0.97. Users can set the
threahold according their usage scenarios.



TABLE V: (RQ3) Contribution of each component of ENVUL

Module
Test Set SVEN MegaVul SafeCoder

TOP-1 TOP-3 TOP-5 TOP-1 TOP-3 TOP-5 TOP-1 TOP-3 TOP-5
CodeLlamaCoT 26.46% 36.76% 39.70% 28.02% 43.84% 49.07% 42.86% 54.75% 64.24%
CodeLlamaFT 36.76% 44.11% 51.47% 38.48% 49.07% 59.53% 47.56% 57.06% 64.85%
w/o Consolidator 58.82% 70.59% 75.01% 57.89% 71.93% 80.70% 73.81% 83.33% 85.71%
w/o Indicator 61.76% 70.59% 76.47% 63.16% 75.44% 85.07% 78.57% 87.24% 89.27%
only FT 57.35% 67.65% 72.06% 61.40% 73.68% 78.95% 76.19% 88.10% 91.45%
ENVUL 63.23% 73.53% 79.40% 66.63% 78.83% 87.67% 80.92% 90.42% 92.82%

TABLE VI: Hyperparameter Sensitivity

λ 0.9 0.93 0.95 0.97 0.99

Near 68.13% 69.20% 69.78% 71.96% 68.04%
Far 61.51% 61.76% 61.93% 63.16% 62.38%

RQ3 Answer: ENVUL’s consolidator and indicator
effectively enrich statement-level information and en-
hance the model’s learning capabilities, and dynamic
routing improves the ENVUL’s effectiveness on out-
of-domain data. Both complement each other, improv-
ing the vulnerability localization performance.

F. RQ4.Adaptability to General LLM

For this research question, we evaluate how effectively
ENVUL performs across different general LLMs.

Setting. We maintain the fine-tuned adapter and rout-
ing mechanism unchanged and utilize three different gen-
eral LLMs: CodeLlama-7B(backbone model for fine-tuning),
Claude-3.5, and DeepSeek-R1. We follow the setting of RQ1
for training and testing and use Top-1 as metric.

Results. Figure 6 shows the results of our general LLM
selection experiments. As the performance of the general
LLM improves, ENVUL achieves consistently better results.
The adaptability of our approach allows for seamless inte-
gration with various general LLMs for effective vulnerability
localization tasks. This capability indicates that ENVUL’s
vulnerability localization performance can be enhanced by
leveraging more capable general LLMs, further demonstrating
the inherent scalability of our tool.

RQ4 Answer: ENVUL seamlessly integrates with var-
ious general LLMs, enabling it to achieve better vul-
nerability localization as LLM capability increases.

G. RQ5.Real World Performance

We further evaluate ENVUL’s real-world performance in
this research question.

Setting. To mitigate potential data leakage concerns of
LLMs, we manually crawl 327 CVEs from April 2024(The
knowledge cut-off date of Claude 3.5 Sonnet) to Feb 2025.
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Fig. 6: RQ4. ENVUL’s Adaptability to General LLM

Subsequently, we use SVEN as training set and use the
crawled unseen CVEs as testing set. Moreover, we chose the
PrimeVul [31] dataset to further assess ENVUL’s performance
due to its real-world nature, top-tier quality, and extensive use
within the vulnerability research works [42]–[44]. We obtain
2831 patches through the commit links provided by PrimeVul,
and conduct evaluation following the setting of RQ1.

Results. The results of locating unseen CVEs are displayed
in Table VII. Even on previously unseen new vulnerabilities,
ENVul still demonstrates stable localization effectiveness.

TABLE VII: Performance on Unseen-CVEs

Model Top-1 Top-3 Top-5

LLMAO 34.86% 44.65% 56.88%
ENVul 44.34% 60.55% 68.50%

Furthermore, ENVul maintains strong performance on
PrimeVul as shown in Table VIII. This demonstrates that EN-
VUL can not only identify vulnerabilities within its knowledge
scope through model fine-tuning, but also locate unknown
vulnerabilities in real-world scenarios by leveraging the gen-
eralization knowledge of a general-purpose LLM.



TABLE VIII: Performance on PrimeVul Dataset

Model Top-1 Top-3 Top-5

LLMAO 30.74% 41.34% 49.82%
ENVul 38.52% 50.18% 62.90%

RQ4 Answer: By combining the specialized capa-
bilities of fine-tuned models with the generalization
knowledge of general models, ENVUL also demon-
strates strong performance in locating unknown vul-
nerabilities in real-world scenarios.

V. THREATS TO VALIDITY

Threats to internal validity. The selection of hyperparam-
eters may affect the performance of our ENVUL. We set the
learning rate to a fixed 1e-4 to accelerate convergence, but
this might lead to suboptimal results, ultimately causing the
localization performance to deviate from the ideal outcome.
Due to the complexity and diversity of vulnerability data,
our dynamic routing mechanism cannot completely eliminate
the influence of out-of-domain data, which means fine-tuned
models will still encounter many unfamiliar vulnerabilities,
leading to incorrect localization results.

Threats to external validity. To mitigate the generalization
challenge of ENVUL, we employ three datasets in experi-
ments, which contain extensive real-world vulnerability data.
We evaluate the baseline methods and ENVUL fairly across
these three datasets. In future work, we will explore the
performance of ENVUL on other datasets.

VI. RELATED WORK

We categorize related work into three parts: vulnerability
detection, vulnerability localization (relevant to the purpose
of ENVUL), and out-of-distribution detection (relevant to the
method proposed in ENVUL).

Vulnerability detection. Traditional static vulnerability
detection efforts [3], [13], [14], [45]–[51], which necessitate
intense manual labor (e.g., feature definition), often lead to
a high false negative rate [2]. In response, a series of deep
learning-based approaches [2], [4], [33] have been introduced.
Devign [33] utilizes graph neural networks to detect code
vulnerabilities. VulBG [52] adopts a Behavior Graph Model
to leverage global contextual information for detecting vulner-
abilities. However, these function-level vulnerability detection
approaches typically only identify issues at the function level,
with a coarse granularity. This limits developers’ ability to
effectively inspect and interpret the predictions of learning
models.

Vulnerability localization. Locating vulnerabilities on the
specific lines can effectively reduce the manual effort required
for vulnerability detection and enhance the Interpretability of
the detection results, hence garnering increasing attention in
recent years [1], [7], [18], [19], [53]–[58]. LineVul [18] utilizes
attention mechanisms within the BERT [39] architecture for

line-level vulnerability prediction. Yang et al. [19] proposed
LLMAO, which fine-tunes a small group of bidirectional
adapter layers. However, it only utilizes the representation
of a single token per line, thereby losing a lot of important
information. SoapFL [20] is a LLM-driven standard operating
procedure to automatically localize buggy methods. We do not
use it for evaluation because SoapFL is suitable for method-
level fault localization and requires test cases, while ENVul is
a statement-level vulnerability localization tool and does not
require test cases. More importantly, due to the discrepancy
between real data and training data, these methods often
yield seemingly trustworthy but erroneous results when fac-
ing undetectable vulnerabilities. Our work, ENVUL, employs
OOD detection to identify vulnerabilities outside the expected
distribution and utilizes consolidator and indicator to obtain
more comprehensive code representation.

VII. CONCLUSION

In this paper, we introduced ENVUL, a novel domain
adaptation framework for vulnerability localization. By syn-
ergizing enhanced task-specific tuning with strategic prompt
engineering, ENVUL bridges the gap between specialized
domain knowledge and generalizability. Our context Consol-
idator and semantic Indicator components improve statement-
level semantic understanding and vulnerability pattern recog-
nition, while the dynamic routing mechanism intelligently
leverages the strengths of both fine-tuned and general-purpose
LLMs. Evaluations on real-world vulnerabilities demonstrate
ENVUL’s superior performance and exceptional generaliza-
tion capabilities, with 22.7%-30.3% improvements in top-
1 accuracy and 43.6%-50% higher accuracy on unfamiliar
vulnerability types.
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