
Crash-Avoiding Program Repair
Xiang Gao

National University of Singapore
Singapore

gaoxiang@comp.nus.edu.sg

Sergey Mechtaev
University College London, UK

mechtaev@gmail.com

Abhik Roychoudhury
National University of Singapore

Singapore
abhik@comp.nus.edu.sg

ABSTRACT
Existing program repair systems modify a buggy program so that
the modified program passes given tests. The repaired program
may not satisfy even the most basic notion of correctness, namely
crash-freedom. In other words, repair tools might generate patches
which over-fit the test data driving the repair, and the automatically
repaired programs may even introduce crashes or vulnerabilities.

We propose an integrated approach for detecting and discarding
crashing patches. Our approach fuses test and patch generation into
a single process, in which patches are generated with the objective
of passing existing tests, and new tests are generated with the objec-
tive of filtering out over-fitted patches by distinguishing candidate
patches in terms of behavior. We use crash-freedom as the oracle to
discard patch candidates which crash on the new tests. In its core,
our approach defines a grey-box fuzzing strategy that gives higher
priority to new tests that separate patches behaving equivalently
on existing tests. This test generation strategy identifies seman-
tic differences between patch candidates, and reduces over-fitting
in program repair. We evaluated our approach on real-world vul-
nerabilities and open-source subjects from the Google OSS-Fuzz
infrastructure. We found that our tool Fix2Fit (implementing patch
space directed test generation), produces crash-avoiding patches.
While we do not give formal guarantees about crash-freedom, cross-
validation with fuzzing tools and their sanitizers provides greater
confidence about the crash-freedom of our suggested patches.

CCS CONCEPTS
• Software and its engineering → Automatic programming;
Software testing and debugging.

KEYWORDS
Automated program repair, Overfitting, Fuzzing

ACM Reference Format:
XiangGao, SergeyMechtaev, andAbhik Roychoudhury. 2019. Crash-Avoiding
Program Repair. In Proceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (ISSTA ’19), July 15–19, 2019, Beijing,
China. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3293882.
3330558

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3330558

S P Pcrash−free

Pcrashing

C

1

Figure 1: Structure of program repair search space, where S
is a space of candidate patches, P is a set of plausible patches,
Pcrashfree is a set of crash-free patches, C is a set of correct
patches, Pcrashing = P \ Pcrashfree is a set of crashing patches.

1 INTRODUCTION
For a given program with a defect, the goal of program repair is
to eliminate the defect by automatically transforming the program
source code. Typically, program repair systems construct a space
of candidate patches (set S in Figure 1) and search for a patch
that passes the given tests. Such patches that pass given tests are
called plausible patches (set P in Figure 1) in the program repair
literature. Since a test suite is an incomplete specification, only part
of plausible patches are correct (setC in Figure 1), and the remaining
patches merely overfit the tests. When we repair a program crash,
the over-fitted patches may still cause program crash for the test
outside of the given test suite.

In this work, we propose to divide the set of plausible patches
P into two subsets Pcrashfree (crash-free plausible patches), and
Pcrashing (crashing plausible patches) and suggest that program
repair should aim to find a patch from the set Pcrashfree , that is a
patch that passes given tests and does not cause crashes for the
inputs outside of the repair test suite. Although crash-freedom is im-
plicitly assumed to hold for correct patches, existing program repair
systems do not guarantee this property and may generate patches
causing crashes or even introduce new crashes and vulnerabilities.

A prominent group of testing techniques that were successfully
used to find serious vulnerabilities in popular software is coverage-
based greybox fuzzing [1, 2]. These techniques resort to compile
time instrumentation which guides the generation of test inputs. In
these algorithms, inputs are randomly mutated to generate new in-
puts, and higher priority is assigned to inputs that exercise new and
interesting program paths. Whether a generated input exercise new
paths is predicted based on whether new control flow transitions
are exercised; this is found out with the help of the compile-time
instrumentation. The main intuition of these techniques is that cov-
ering more program paths (that correspond to different semantic
partitions of the input space) enables them to cover more parts of
program functionality and therefore find more crashes.

https://doi.org/10.1145/3293882.3330558
https://doi.org/10.1145/3293882.3330558
https://doi.org/10.1145/3293882.3330558

ISSTA ’19, July 15–19, 2019, Beijing, China Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury

Coverage-based greybox fuzzing can be applied to detect crashes
in automatically generated patches in the following way: (1) gener-
ate a high coverage test suite using fuzzing for the original program,
and (2) run this test suite on all plausible patches P to discard those
that introduce crashes, and thus find an over-approximation of
Pcrashfree . However, we argue that this approach is ineffective for
the following two reasons. First, each candidate patch alters the
semantics of the original program and therefore might induce differ-
ent semantic partitions of the input space, so tests generated for the
original program might not adequately cover the functionality of
the patched program. Second, to divide the set of plausible patches
P into subsets Pcrashfree and Pcrashing (dotted line in Figure 1), the
generated tests should also differentiate patches in the search space.

To take the above considerations into account, we suggest that
test generation for program repair should not be based merely on
the coverage of the original program, but also on the coverage
of the divergences introduced by the patches in the search space.
Thus, a test suite produced by our method is not just aimed to cover
functionality of the original program, but also (1) functionality that
is altered by the candidate patches, and (2) functionality that differs
across candidate patches. Since such a test suite is more likely to
find divergences among plausible patches P , consequently it is more
likely to differentiate between Pcrashfree and Pcrashing .

As a practical realization of this concept, we propose a new al-
gorithm that fuses patch and test generation into a single process.
In this process, patches are generated with the objective of pass-
ing existing tests, and new tests are generated with the objective
of differentiating patches. However, since there could be many
plausible patches, it is inefficient to separately generate tests to
distinguish each pair of these patches. Instead, we propose to group
patches into test-equivalence classes, sets of patches that demon-
strate equivalent behaviour on existing tests. These are called as
patch partitions. When generating tests, we assign higher priority to
those tests that refine patch partitions into finer-grained partitions,
since such tests cover previously uncovered semantic differences
between candidate patches. This allows us to efficiently cover diver-
gences between candidate patches without explicitly considering
all pairs of patches.

Contributions Program repair techniques suffer from over-fitting,
and cannot distinguish correct patches from plausible incorrect
patches. Our work is a step towards rectifying this problem. First
and foremost, we propose to tightly integrate testing and program
repair to effectively discard crashing patches. Secondly, we devise
fuzz testing strategies to guide test generation towards differen-
tiating patches in the search space. Our fuzz testing tool Fix2Fit
actively exploits the search space of patches maintained as patch
partitions computed via test equivalence relations. Tests are gen-
erated with the goal of refining the patch partitions. Last but not
the least, we construct a set of subject programs from OSS-Fuzz
(a popular open-source repository from Google) capturing a wide
variety of software vulnerabilities. We evaluate our patch-aware
fuzz testing strategies as embodied by our tool Fix2Fit on the con-
structed benchmark, and show significant (up to 60% reduction)
in the space of candidate patches. If the oracles of a few (5-10)
newly generated tests are available, this reduction increases to 93%
on our OSS-Fuzz subjects. Fix2Fit is available open-source from
https://www.github.com/gaoxiang9430/fix2fit.

2 RELATEDWORK
Test-based Automated Program Repair. Test-based automated
program repair treats the provided test suite as specification of
intended behavior and generates patches that make program pass
all the given tests. Typically, patch generation methods include:
(1)search-based approaches search the correct patch from a huge
patch space using meta-heuristic [3, 4], random search [5] or test-
equivalence analysis [6] (2)constraint solving based approaches ex-
tract constraints from test executions, and synthesize patches by
solving the constraints [7–10], and (3) potentially learning-based
approaches use a model to select patches that are more likely to fix
the defect based on existing patches [4, 11] or program context [12].
While these approaches are able to generate high-quality patches
according to the provided tests, the weakness of test suites remains
a challenging problem in test-based program repair. Due to the
incompleteness of test suites, the generated patches may overfit
the available tests and can break untested functionality [13]. To
alleviate the over-fitting problem, existing approaches filter out
overfitted patches by defining anti-pattern [14] or generating small-
est program repairs [9]. Our work on Fix2Fit is orthogonal to those
techniques and can be combined with them in the future.

Test Generation for Program Repair. Automatically generat-
ing more tests for automated program repair is a useful strategy to
alleviate the overfitting problem. Existing approaches generate ad-
ditional test cases using symbolic execution, grey box fuzzing [15]
(like AFL) or evolutionary algorithm [16] (like EvoSuite [17]). All
those approaches are designed to generate tests with the goal of
covering the patched methods or statements, but they do not take
the patch semantics into consideration. DiffTGen [18], the work
most relevant to us, generates test inputs that exercise syntactic
differences, monitors execution results and then selects tests that
uncover differences between the original faulty program and the
patched program. Compared with DiffTGen where the patch is
validated one by one, Fix2Fit is more efficient since it examines
the patches in the same patch partition together. Besides, different
from all existing approaches, Fix2Fit utilizes semantic difference
between patches as a search heuristic and guides the test case gen-
eration process, so that we can efficiently find more behavioral dif-
ferences across patches. Inferring the expected behaviors (oracles)
for newly generated test inputs is another challenging problem. Ex-
isting approaches infer oracles of tests based on test similarity [19],
developers’ feedback [18, 20] or some obvious oracles (like mem-
ory safety [15]). In contrast, Fix2Fit utilizes security oracles from
sanitizers to avoid introducing crashes or vulnerabilities.

Goal-directed Test Generation Goal-directed test generation
can be used to generate test inputs to maximize code coverage [1, 2],
cover the changes in patch [21] or find behavioral asymmetries
between programs (differential testing) [22]. Symbolic execution
employs constraint collection and solving to systematically and
effectively explore the state space of feasible execution paths [23],
and can be used for directed testing [24–27]. In contrast to symbolic
execution, grey box fuzzing does not involve heavy machinery of
symbolic execution and constraint solving. Greybox fuzzing directs
the search to achieve a certain goal by adjusting the mutation
strategy according to the information collected at run-time with
the help of compile-time instrumentation. Greybox fuzzing has

https://www.github.com/gaoxiang9430/fix2fit

Crash-Avoiding Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

1 int decode_dds1 (By teContex t ∗ gb , u i n t 8 _ t ∗ frame ,
int width , int he i gh t) {

2 . . .
3 segments = by t e s t r e am2_ge t _ l e 1 6 (gb) ;
4 while (segments −−) {
5 if (b i t b u f & mask) {
6 . . .
7 }
8 else if (b i t b u f & (mask << 1)) {
9 v = by t e s t r e am2_ge t _ l e 1 6 (gb) ∗ 2 ;
10 if (f rame − f rame_end < v)
11 return AVERROR_INVALIDDATA ;
12 frame += v ;
13 } else {
14 int rema in ing_space = frame_end−f rame ;
15 if (r ema in ing_space < width+3)
16 //"width+3" → "width+4" (correct patch)
17 return AVERROR_INVALIDDATA ;
18 frame [0] = frame [1] = frame [width] =
19 frame [width +1] = by t e s t r e am2_ge t _byte (gb) ;
20 frame += 2 ;
21 frame [0] = frame [1] = frame [width] =
22 //buffer overflow location
23 frame [width +1] = by t e s t r e am2_ge t _byte (gb) ;
24 frame += 2 ;
25 }
26 } }

Listing 1: Buffer overflow vulnerability in FFmpeg

been demonstrated to be useful for increasing code coverage [1, 28],
reaching target location [21], and finding behavioral asymmetries
between programs [22]. Different from those techniques, Fix2Fit
takes the semantic of patches into consideration and it is designed
with the goal of finding semantic discrepancies between patches.

3 OVERVIEW
In this section, we give a high-level overview of our approach to
generate crash-free patches by presenting an example from FFm-
peg. FFmpeg is a collection of libraries and programs for handling
video, audio and other multimedia files, streams. A buffer over-
flow vulnerability is reported by OSS-Fuzz1 in May, 2017. This
vulnerability is caused by incorrect bounds checking when FFmpeg
decodes DirectDraw Surface (DDS) files2. Listing 1 shows the key
code snippet as well as its patch. The decode method in Listing 1
takes four parameters, where gb stores the origin data of the input
image, width and height are initialized based on the information
from input image header, and frame is a buffer to store decoded data.
If remaining_space is equal to width+3 (line 15), an invalid buffer
access will occur in line 23, since it will overwrite the memory
locations after frame_end. The correct patch3 for this vulnerability
is to modify the condition in line 15 from width+3 to width+4.

Automated program repair (APR) takes a buggy program and a
set of test cases (including failing tests which will cause program
crash) as inputs. Since the tests do not cover all program functional-
ities, APR tools may generate many over-fitted patches which make
program pass all the test suite but do not actually fix the bug. Given
the failing test case and a set of supported transformations, 1807
plausible patches are generated to fix the buffer overflow vulnera-
bility. Column plausible patch in Table 1 shows part of patches that
1https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=1345
2DDS is an image file format for storing texture and environments
3https://github.com/FFmpeg/FFmpeg/commit/f52fbf

Table 1: Plausible patches and their behaviors on new test

Id plausible patch T1 T2 T3 T4

1 remaining_space>width+1 (T) ✓ (F) ✗ — —
2 remaining_space>width+2 (F) ✗ — — —
3 remaining_space! =width+3 (T) ✓ (T) ✓ (T) ✓ (T) ✓

4 remaining_space<=width+3 (T) ✓ (T) ✓ (F) ✓ (F) ✓

5 remaining_space>=width+3 (F) ✗ — — —
6 remaining_space<width+4 (T) ✓ (T) ✓ (F) ✓ (F) ✓

7 remaining_space<width+5 (T) ✓ (T) ✓ (T) ✓ (F) ✓

8 remaining_space<width+6 (T) ✓ (T) ✓ (T) ✓ (F) ✓

T1: remaining_space=width+2 T2: remaining_space=width
T3: remaining_space=width+4 T4: remaining_space=width+6

can make the program pass the failing test. Out of them, the fourth
and sixth patches are semantically equivalent to the developers’
patch. However, other patches over-fit the existing test set. Those
patches fix the crash triggered by existing test set, but they do not
completely fix this vulnerability and even introduce new vulner-
abilities (e.g. the patched program using first patch crashes when
remaining_space is equal to width+2). The fundamental reason is
that the search space of candidate patches is under-constrained.

To tighten the search space and rule out crashing patches, one
solution is to automatically generate more test cases. This leads to
the following research question: how to generate test cases that
can filter out a large fraction of over-fitted patches?

Existing fuzzing techniques are not suitable for efficiently gen-
erating tests to constrain the patch space. Most fuzzing tools (e.g.
AFL [1]) favour the mutation of input with the goal of finding un-
explored statements, or enhancing code coverage. Different from
program testing, the role that fuzzing plays in repair is to generate
test cases to find discrepancies between patches and filter out over-
fitted patches instead of improving code coverage. In this example,
we expect tests that can drive the execution to the patch location
with different program states (values of remaining_space, width).

To efficiently generate test inputs that can filter out overfitted
patches and differentiate patches, we propose a strategy to integrate
test generation and program repair. Our main intuition is, if one test
is able to find the discrepancies between patches, its neighbors are
also likely to find discrepancies. Table 1 shows the patch behaviors
over four tests. The patch behavior is shown by its effectiveness
in repairing vulnerability and expression value, where ✓ and ✗

represent whether buffer overflow vulnerability is triggered or not
by each test, T and F represent the value of patch expression (true
or false). Suppose these four tests are generated in order, with
values of remaining_space equals to width+2, width, width+4, and
width+6 respectively. For instance, the expression value of patch
2 (remaininд_space > width + 2) is false (F) under test T1, and
program fixed by this patch still crashes (✗) under T1, so that patch
2 is filtered out andwill not be considered in the following iterations.
Test input T1 is able to find the discrepancies between patches, and
rule out two over-fitted patches. Correspondingly,T2 andT3, which
are two neighbors of T1 (a single increment or decrement mutation
over width or v on line 9), can also find discrepancies.

To guide the test generation process, Fix2Fit adopts an evolution-
ary algorithm similar to the popular AFL fuzzer [1]. AFL undergoes

ISSTA ’19, July 15–19, 2019, Beijing, China Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury

compile-time instrumentation to capture control flow edges, and
at run-time during test generation it uses the instrumentation to
predict whether a newly generated test exposes new control flows.
Tests which expose new control flows are favored and they are
retained for further examination by mutating them further. In ad-
dition to code coverage based heuristic used in AFL, we propose
a new heuristic: we favor tests with greater ability to distinguish
plausible patches. In this example, AFL will not retain T1, since it
does not improve code coverage. However, our proposed patch-
aware fuzzing will retain T1 for further mutation, so we have a
chance of finding tests like T2 or T3 via mutation. In addition, the
chance of generating tests to find discrepancies across patches, can
be further increased by assigning higher “energy” to T1 (meaning
more mutations of T1 will be constructed by the fuzzer).

Out of eight patches given in Table 1, three plausible patches
(1, 2, 5) can be ruled out, since the program constructed by those
patches still crashes over some tests. For the remaining five plausible
patches, the patched program does not crash, but the semantic
behaviors of them are different (two of them are correct). The
remaining incorrect patches cannot be ruled out due to the lack of
oracles of the generated tests. If the oracle of certain tests such asT3
is provided (could come from more fine-grained program analysis
or from developers), all the incorrect patches can be ruled out.

4 BACKGROUND
We denote a program as p and a program obtained from p by substi-
tuting an expression e with e ′ as p[e 7→e ′]. The substitution (e 7→e ′)
of expressions is called patch of p, and sets of patches are denoted as
P , P1, ..., Pn . The letters t , t1, ..., tn represent program inputs (tests),
and T ,T1, ...,Tn represent sets of program inputs (test suites).

4.1 Program Repair
Automated program repair techniques take in a buggy program,
and a set of passing and failing tests, and aim to generate a patched
program that passes all the given tests. We consider the search
spaces of candidate patches that consist of only modifications of
program expressions. The search space in our approach is defined
by the following transformation schemas:

• Change an existing assignment:
x B e; 7→ x B e′;

• Change an existing if-condition:
if (e) {...} 7→ if (e′) {...}

• Add an if-guard to an existing statement S:
S; 7→ if (e) S;

where e and e ′ are arbitrary expressions of bounded size. Patches
that pass all the given tests are called plausible patches. Since a test
suite is an incomplete specification, plausible patches may not be
correct, but merely overfit the given tests. Besides, the plausible
patches may even introduce new bugs and break the under-tested
program functionality. The most basic approach to patch generation
is the generate-and-validate algorithm [29] that enumerates and
tests individual patches. This algorithm, however, scales only to
small search spaces because of the cost of test execution. Test-
equivalence analysis [6, 30, 31] can optimize this process.

Definition 4.1 (Test-equivalence). Let p and p′ be programs, t be
a test. We say that p is test-equivalent to p′ w.r.t. t if both p and p′
produce same output by executing t .

In some cases, test-equivalence of two programs can be detected
without executing each of them individually, but instead performing
dynamic analysis while executing only one of them, which helps
to reduce the number of test executions required for evaluation. In
this work, we consider one such analysis referred to as value-based
test-equivalence [6]. The search space of patches is represented as a
collection of patch partitions. The patch partitions are constructed
by using a value-based test-equivalence relation.

Definition 4.2 (Value-based test-equivalence). Let e and e ′ be ex-
pressions, p and p′ be programs such that p′ = p[e 7→ e ′], t be a
test. We say that p is value-based test-equivalent to p′ w.r.t. t if e is
evaluated into the same sequence of values during the execution of
p with t , as e ′ during the execution of p′ with t .

4.2 Greybox Fuzzing
We briefly describe how Greybox Fuzzing (e.g. AFL [1]) works in
Algorithm 1. Given a set of initial seed inputsT , the fuzzer chooses
t fromT (line 2) in a continuous loop. For each selected t , the fuzzer
determines the number of tests to be generated bymutating t , which
is called the energy of t , and its assignment is dictated by a power
schedule. The fuzzer generates new inputs by mutating t according
to defined mutation operators and the power schedule. New input t ′
will be added to the circular seed queue (line 7) for further mutation
if it is a “interesting" input, meaning it potentially exposes new
control flows as deemed from the compile-time instrumentation.

ALGORITHM 1: Greybox Fuzzing
Input: seed inputs T

1 while timeout is not reached do
2 t := chooseNext(T);
3 energy := assignEnergy(t);
4 for i from 1 to energy do
5 t ′ := mutate(t);
6 if isInteresting(t ′) then
7 T := T ∪ t ′;
8 end
9 end

AFLGo [21], an extension of the popular grey-box fuzzer AFL,
directs the search to given target locations. In AFLGo, an estimation
of the distance of any basic block to the target(s) is instrumented at
compile time, and these estimates are used during test generation
to direct the search to the targets. Specifically, tests with lower esti-
mated distance to the target are preferred by assigning more energy
to these tests, and this energy difference increases as temperature
decreases. The temperature is controlled by a cooling schedule [32],
which dictates how the temperature decreases over time. Based on
cooling schedule, the current temperature Texp is defined as:

Texp = 20−
ctime
timex (1)

where timex is user-defined time to enter "exploitation" (preferring
tests deemed closer to the target) from exploration, ctime is current
execution time. Given the current temperature Texp , normalized

Crash-Avoiding Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

Mutators

Test suite
(Seeds)

Mutated files

Input Queue

(IsInteresting)
Enqueue

Dequeue

Pool of Patches

}
Refine

patch pool

Assign
energy

the boundary of patch partitions

Figure 2: Structure of integrated testing and repair loop

distance d(t ,Tb) between test t and target location Tb , AFLGo in-
troduces an annealing-based power schedule (APS):

aps(t) = (1 − d(t ,Tb)) ∗ (1 −Texp) + 0.5Texp (2)

and determines the energy assigned to t by multiplying the energy
assigned by AFL with a power factor calculated using APS:

energyaflgo(t) = energyafl(t) ∗ 2
10∗aps(t)−5 (3)

5 METHODOLOGY
Fix2Fit is designed to generate new test cases to efficiently rule out
over-fitted plausible patches and generate crash-free patches. Our
goal is to strengthen the filtering of patches by adding additional
test cases. Specifically, Fix2Fit observes the semantic differences
across plausible patches, and then guides the test generation pro-
cess. Fix2Fit utilizes the notion of separability: the ability to find
semantic discrepancies between plausible patches. To represent
the semantic discrepancies, we group all patches showing same
semantic behavior under all available test cases into an equivalence
class, which is called a patch partition. More formally,

Definition 5.1 (Patch Partition). Let T be a set of available test
cases and P be a set of plausible patches of program p. The patched
program by patch pi ∈ P is denoted as p[e 7→ei]. ∀pi ,pj ∈ P , pi and
pj belong to same equivalent patch partition if and only if ∀t ∈ T .
p[e 7→ei] is value-based test-equivalence to p[e 7→ej] w.r.t t .

The ability of a test to find semantic discrepancies is formal-
ized as its effectiveness in refining patch partitions. For any two
patches pi ,pj from the same equivalence partition EP , if p[e 7→ei]
is not value-based test-equivalence to p[e 7→ej] w.r.t new test t , we
say test t refines partition EP . Different from existing fuzz testing
techniques that maximize the code coverage (AFL), or minimize
distance to the target location (AFLGo), Fix2Fit is designed to maxi-
mize semantic discrepancies across patches (thereby refining patch
partitions). To find more semantic discrepancies between plausi-
ble patches, we essentially generate test cases that can make the
execution reach the patch location with divergent program states.

5.1 Integration of Test Generation and Repair
Figure 2 presents a visual summary of our integrated testing and
repair loop. In directed grey-box fuzzers such as AFLGo [21], the
generation of new tests are guided by distance to the target gathered
at run-time with the help of compile-time instrumentation. In our
fuzzer, the fuzzing is guided not only by distance feedback but also
by separability, the ability of a test to distinguish patches. In this

ALGORITHM 2: Patch-aware Greybox Fuzzing
Input: test suite Tin , program p

1 Par := genPlausiblePatches (p , T); // generate set of patch partitions

2 pLocs := extractPatchLocs (Par); // extract set of patch locations

3 p′ := instrument (p , pLocs); // instrument fuzzing targets

4 Tnew := { };
5 T := Tin ;
6 while true do
7 t := chooseNext(T);
8 for i from 1 to t.energy do
9 t ′ := mutate(t); Tnew := Tnew ∪ {t ′ };

10 (isReached, distance, coverage) := exec(p′, t ′);
11 if isReached then
12 Par := refine_and_filter(Par, t ′);

// Break patch partitions & remove over-fitted partitions

13 sep := separability(t ′, Tnew) // Equation 4

14 end
15 t’.energy := powerSchedule(sep, distance, coverage); // Sec 5.3

16 if isInteresting(coverage, sep) then
// Sec 5.4

17 T := T ∪ {t ′ };
18 end
19 end
20 if timeout | | sizeOf(Par) == 0 then
21 break;
22 end
23 Output: remaining patch partitions Par

way, we prioritize tests which can distinguish existing patches and
as a result rule out more over-fitted patches.

Algorithm 2 shows the key steps of Fix2Fit. The main procedure
is built on top of an automated patching technique, and directed
greybox fuzzing technique. Given a buggy program p, a test-suiteT ,
and at least one test case in T that can trigger a bug, this algorithm
will return a set of plausible patch partitions for fixing the bug.
Fix2Fit generates the initial set of plausible patches by inheriting
the traditional Generate and Validate approach, where a set of patch
candidates are generated and evaluated using a provided set of test
cases (line 1). Incorrect patches are filtered out in the evaluation
process, and a set of plausible patches are returned back. Besides
plausible patches, it groups patches with same semantic behavior
into a set of patch partitions (as per the value-based test equivalence
Definition 5.1). The plausible patches may be over-fitting, and the
patch partitions can be broken by generating more tests.

To filter out over-fitted patches by generating new tests, the
newly generated tests must at least reach the patch location. We
instrument program p with the patch location as target (Line 3) to
produce an instrumented program p′. At runtime, the instrumen-
tation is used to calculate code coverage and the distance to the
patch location (line 10), and also the separability for each newly
generated test. The separability of a test t ′ captures its ability to
find semantic discrepancies between plausible patches.

For each newly generated input t ′, Fix2Fit first evaluates whether
t ′ drives the execution to the patch locations (isReached). If test
t ′ reaches any target(Lines 11-13), procedure refine_and_filter is
invoked, which refines the patch partitions and also filters out
patch partitions as follows. (1) First, refine_and_filter refines the
current patch partitions Par using test t ′. The refinement process
may break the existing patch partition into several sub-partitions
since the underlying value-based test-equivalence relation now also
considers the newly generated test t ′. (2) After the patch partitions

ISSTA ’19, July 15–19, 2019, Beijing, China Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury

0.0 0.2 0.4 0.6 0.8 1.0
separability(t)

0.0

0.2

0.4

0.6

0.8

1.0

sc
he

du
le
(t)

ctime=0

ctime=20

ctime=120

0 20 40 60 80 100 120
current time(min)

0.0

0.2

0.4

0.6

0.8

1.0

sc
he

du
le

(t)

seperability=0

seperability=0.5

seperability=1

Figure 3: (a) energy of a test with different separability at
0min, 20min, 120min (b) energy of a test t at different time
when separability(t)=0, 0.5, 1. timex=60min

are refined using t ′, the procedure refine_and_filter checks which
of the patch partitions can be shown to be over-fitting (patches
which crash on test t ′) and filters out those patch partitions.

Separability of a generated test t ′ (the patch-awareness in our
fuzzing method) is exploited along two dimensions: (1) it is used
in power schedule to determine the energy assigned to new test
t ′ as shown in line 15, and (2) it is used to determine whether
the generated input t ′ is added to the seed input set T for further
investigation/mutation (Lines 16-17).

The integrated fuzzing and repair algorithm is terminated on
timeout, or when all plausible patches are filtered out.

5.2 Separability of Test Cases
In Algorithm 2, test generation is guided by the behavioral differ-
ences across plausible patches. The ability of a test to find semantic
discrepancies between plausible patches is formalized as separabil-
ity. We now explain how the separability is calculated.

When a new test t ′ is introduced, its effects on the current patch
partitions can be captured in two ways: (1) patch filtering: rule
out crashing patches (2) partition refinement: refine existing patch
partition into several sub-partitions. Both of these can be used to
calculate the separability of test t ′, which in turn determines the
“energy” assigned to t ′ in fuzzing.

We argue that the partition refinement is a better heuristic than
patch filtering for the purpose of guiding fuzzing. In the fuzzing
process, by mutating a test with high separability, we hope that the
generated neighbors are also tests with high separability. If we de-
fine separability in terms of number of over-fitted/crashing patches
filtered, we note that whether the patch is crashes on new test t ′
or not often depends on very specific values, for instance divide-
by-zero error can only be triggered when input is 0. Therefore, we
cannot assume that by mutating a test which exposes crashes, we
are also likely to get tests exposing crashes.

Compared to patch filtering, partition refinement is a smoother
metric, since the patches are grouped into partitions using test-
equivalence relation and whether partitions can be refined only
depends on the values of patch expressions. In other words, if one
test t ′ is able to pin-point semantic differences between patch candi-
dates (refine patch partitions), its neighbors (obtained by mutating
t ′) also have high chance to find semantic differences between
patch candidates. Once we generate one test that can refine patch
partitions, it is more likely that we can distinguish the crash-free
patches from crashing patches, and as a result, rule out over-fitted
patches. Based on this intuition, we define the separability of test
as its ability to refine test-equivalence based patch partitions.

Our notion of separability judges how much refinement is ob-
served on the patch partitions once a new test is introduced. Given
a set of patch partitions {P1, P2, ...Pn }, and a newly generated test
t ′, if the patches in partition Pi show different behaviors on test t ′,
we say t ′ refines partition Pi . We use b(t ′) to represent the number
of patch partitions that can be refined by test t ′. Fix2Fit always
maintains a set Tnew of newly generated tests, as shown in Algo-
rithm 2. We define the separability of test t ′ as b(t ′) divided by
maximum b(t) of any pre-generated test t ∈ Tnew :

separability(t ′) =
b(t ′)

maxt ∈Tnew b(t)
(4)

5.3 Power Schedule
We now define the notion of power schedule, which is a measure of
the “energy” with which the neighborhood of a test is investigated
(line 14 of Algorithm 2). Our goal is to investigate those tests more,
which can differentiate between plausible patch candidates.

To differentiate plausible patches in the search space, we should
first generate tests that reach patch location. Therefore, we inherit
the power schedule of the directed grey-box fuzzer AFLGo [21],
which directs the search to given target locations. Specifically, tests
with lower estimated distance to the target are preferred by assign-
ing more energy to these tests. Apart from reaching patch locations,
generating divergent program states in the patch location is neces-
sary to differentiate plausible patches. Fix2Fit prioritizes the tests
with higher separability by assigning more energy to these tests.
Note that separability of a test is calculated at run-time with the
help of compile-time instrumentation.

To generate divergent program states in the patch location, two
kinds of tests are needed: (1) tests that make execution reach patch
location following various paths (2) tests that make execution reach
patch location following same path but with different values (to
refine value-based test-equivalence relation). To take both kinds
of tests into consideration, we utilize the cooling schedule [32] no-
tion adapted from simulated annealing. Specifically, the degree to
which a test with high separability is preferred (over a test with
low separability) is increased over execution time (“temperature
decreases" using the simulated annealing terminology). In other
words, Fix2Fit performs exploration at the very beginning to explore
various paths, and gradually changes to exploitation to differentiate
plausible patches. Given current temperature Texp (as defined in
Equation 1) as well the separability(t’), our power schedule is:

schedule(t ′) = separability(t ′) ∗ (1 −Texp) (5)

Thus schedule(t ′) ∈ [0, 1]. The behavior of this power sched-
ule is illustrated in Figure 3. We describe the integration of this
power schedule into a fuzzer. Suppose energyaflgo(t ′) is the energy
assigned to t’ by AFLGo, we define the integrated energy as:

energy(t ′) = energyaflgo(t
′) ∗ 2schedule(t

′)∗log2Max_Factor (6)

where Max_Factor is the user-defined max factor integrated to
existing energy, and energy(t ′)

energyaflgo(t ′)
∈ [1,Max_Factor].

5.4 Is Interesting?
Coverage-based greybox fuzzers always maintain a seed queue
to save “interesting” tests for further mutation and investigation.

Crash-Avoiding Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

OSS-Fuzz

Test suite

Candidate
generator

Mutator Guidance
engine

Runtime

Buggy
program

Program
(instrumented)

Patch pool
instrument

refine

cov, dis, sep

Figure 4: Architecture of tool Fix2Fit

This appears as the procedure isInteresting in line 15 of Algorithm
2. In existing coverage based grey-box fuzzers, a test is deemed
“interesting”, if it is predicted to expose new control flows (and
hence improve code coverage); the prediction about discovering
new control flows is aided by compile-time instrumentation. In our
patch-generation guided fuzzer Fix2Fit, on top of retaining tests
exposing new control flows, we also want to retain tests which
makes execution follow a path but with different values thereby
improving the chance to refine patch partitions. Besides tests which
improve code coverage, Fix2Fit also regards the tests with non-
zero separability as “interesting” and adds them to seed queue for
further mutation. As a result, we retain tests which are capable of
distinguishing between existing patch partitions, and the mutations
of such tests are examined by the fuzzer in Algorithm 2.

5.5 Sanitizer as Oracles
The absence of program crashes may not be sufficient to guarantee
program correctness. To mitigate this problem, we enhance patch
checking by introducing sanitizers. Sanitizers can detect various
vulnerabilities at run-time with the help of compile-time instru-
mentation. Generally, sanitizers convert the software vulnerabilities
into normal crashes, e.g. AddressSanitizer crashes the program if a
buffer overflow is detected. By using sanitizers we can rule out the
patches that introduce vulnerabilities. As compared to only filtering
patches based on crashes, more patches can be filted out.

The sanitizers used by Fix2Fit include UndefinedBehaviorSan-
itizer4 (UBSan) and AddressSanitizer5 (ASan). UBSan is used to
catch various kind of undefined behaviors during program execu-
tion, e.g. using misaligned or null pointer, signed integer overflow.
ASan is a tool that detects memory corruption bugs such as buffer
overflows or accesses to a dangling pointer. The patch partitions
are not only checked for crashes, but are also checked against all
available sanitizers, so that remaining patches are guaranteed not
to introduce security vulnerabilities in terms of all available tests.

6 IMPLEMENTATION
The architecture of Fix2Fit is shown in Figure 4. Fix2Fit takes as
inputs the buggy program and test suites extracted from OSS-Fuzz
benchmark, and generates a set of crash-free patches. The initial
test-suite is composed of available developer test cases and the
failing tests generated OSS-fuzz. Fix2Fit consists of three main
components: Candidate generator, Runtime and Guidance engine.
Candidate Generator takes the buggy program and tests as inputs
and generates a pool of patch candidates. The Runtime executes test
on the instrumented program and collects necessary information

4UBSan website: https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
5ASan website: https://clang.llvm.org/docs/AddressSanitizer.html

(e.g. code coverage and separability). Accordingly, the Patch pool is
refined after executing each test. Guidance engine is used to guide
the fuzzing according to all the information collected at runtime.

Instrumentation: To enable Fix2Fit’s grey-box guidance, we
first of all instrument the buggy program to gather run-time in-
formation. To collect the distance to patch locations, we inherit
the instrumentation strategy used in AFLGo [21], where the esti-
mated distances between basic blocks are calculated and injected
at compile-time. Besides, we insert a logging instruction after each
basic block to collect the execution trace, which is then used for
fault localization and for determining whether the patch location
is reached. To enhance the checking of patch candidates, we in-
strument the buggy program using Clang’s sanitizers, including
Undefined Behavior Sanitizer (UBSan) and Address Sanitizer (ASan).
After the instrumentation with sanitizers, we can treat the violation
of sanitizer as normal program crash.

Candidate Generator We first generate the search space ac-
cording to pre-defined transformation operators. The transforma-
tions supported in our prototype include: changing the right-hand
side of an assignment, condition refinement and adding if-guard.
All the operators are borrowed from Prophet [33], Angelix [10]
or F1X [6]. The plausible patch candidates are grouped into patch
partitions based on their runtime value. To collect the run-time
values of patches, Fix2Fit synthesizes a procedure, say procallpatch
enumerating all plausible patches, and generates a meta-program
by dynamically replacing the to-be-fixed expression with a call to
this procedure. At runtime, the procedure procallpatch is invoked
when the patch location is reached. By controlling the enumera-
tion strategy, this procedure procallpatch can generate run-time
values for all the patches with one run and can select the run-time
value of one particular patch to return. This mechanism enables
us to generate and refine patch partitions with one run for each
test. Patch partitions are maintained in the patch pool, as in the
F1X repair tool [6]; different from F1X, patch partitions are used to
guide test generation with the objective of ruling out patches.

Runtime andGuidance engine Themain procedure of fuzzing
is built on top of the directed greybox fuzzer AFLGo [21]. Besides the
heuristic used in AFLGo, the Guidance engine also takes separability
(Equation 4) into account.

7 EVALUATION
We perform the evaluation on the effectiveness of Fix2Fit in gener-
ating test inputs, filtering out over-fitted patches and refining patch
partitions. Our research questions are as follows.
RQ1 What is the overall effectiveness of Fix2Fit in ruling out

over-fitted patches?
RQ2 Is Fix2Fit effective for generating crash-free patches?
RQ3 How far can Fix2Fit reduce the pool of patch candidates, if

the oracles of only a few (say 5-10) tests are available?

7.1 Benchmark Selection
To evaluate our technique, we do not use existing benchmarks since
(1) some existing benchmarks are over-engineered where the given
tests are already complete enough to generate correct patches (2)
we focus on generating crash-free patches for software crash or
vulnerabilities, while most of the defects in existing subjects are

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html

ISSTA ’19, July 15–19, 2019, Beijing, China Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury

Table 2: Defect categories

Defect Type Integer overflow Buffer overflow Unknown address Invalid array access Arithmetic error Others
#Defects 29 20 4 3 4 21

Table 3: Subject programs

Subject #Defect #Test Description

Proj.4 10 3 cartographic projection and geo-
detic transformation library

FFmpeg 26 11 audio & video processing library
Libarchive 12 4 multi-format archive library

Openjpeg 12 13 open-source library to encode and
decode JPEG 2000 images

Libssh 8 23 C library for the SSHv2 protocol
Libchewing 13 11 phonetic input method library
Total 81 — —

logic errors e.g. ManyBugs [34] and Defects4j [35]. Instead, we
select a set of real-world subjects from the OSS-Fuzz (Continuous
Fuzzing for Open Source Software) dataset 6. OSS-fuzz, which has
recently been announced by Google, is a continuous testing plat-
form for security-critical libraries and other open-source projects.
We select projects which contain a large number of bugs and try to
reproduce the defects by installing the corresponding versions in
our environment. We drop the defects that cannot be reproduced.
Furthermore, we focus on subjects which are written in C, since
our repair infra-structure works on C programs.

Eventually, we select six well-known open source projects: Proj.4,
FFmpeg, Libarchive, Openjpeg, Libssh and Libchewing. Brief descrip-
tions of those projects are given in Table 3. Column #Test denotes
the number of tests from developers accompanying each software
project in the OSS-Fuzz repository. For each project, we select a set
of reproducible defects based on the above criteria. Column #Defect
shows the number of selected defects for each project. Totally, 81
unique defects are selected as our subjects. Besides, the bug type of
the selected defects is various. Table 2 shows the number of defect
for each bug type. Specifically, 49 defects are caused by integer
overflow or buffer overflow, 7 of them are caused by invalid access,
and 25 by arithmetic error or other bugs (e.g. memory leak).

7.2 Experimental Setup
To answer RQ1, we compare Fix2Fit with AFL7 and AFLGo8 based
approaches in generating tests to rule out overfitted patches. AFL
(AFLGo) based approach constructs candidate patch space using
same operators as Fix2Fit, but rules out patches using tests gener-
ated by AFL(AFLGo). We choose AFL as our baseline, since it is a
fuzz testing which is widely used in industry and academia. AFLGo,
a directed greybox fuzzer, can be used for patch testing.

Decidingwhether a patch is over-fitted usingwhether the patched
program fails on tests is imprecise [13]. Opad [15] proposes a new
over-fitting measure(O-measure), which is built based on the as-
sumption that a correctly patched program should not behaveworse
than the buggy program. Given a test suite T,
6https://bugs.chromium.org/p/oss-fuzz/issues/list
7http://lcamtuf.coredump.cx/afl/
8https://github.com/aflgo/aflgo

B: the set of test cases that make the buggy version pass(B⊂T)
P: the set of test cases that make the patched version fail(P⊂T)

O-measure is defined as the size of B ∩ P. Opad determine a patch
is over-fitted if it has a non-zero O-measure. In our experiment, we
utilize a similar metric, but we change the definition of B. We define
B as the set of test cases that (i) either make the buggy version pass,
or (ii) make buggy version crash due to “same" defect as the one
we try to fix (by comparing stack trace). The intuition is as follows:
if the patched program still crashes due to same defect, we regard
the corresponding patch as over-fitted patch.

To address RQ2, we compare the number of crash-free patches
generated by Fix2Fit, AFL and AFLGo-based approach. In our exper-
iment, cross-validation is used to evaluate the crash-free property,
where the remaining patches after the filtering of one approach is
validated by the tests generated by other techniques. Specifically,
suppose (T , P) is a pair of test set and plausible patch set, where
the patched program using any patch p ∈ P does not crash under
any test t ∈ T . Let (T1, P1), (T2, P3) and (T3, P3) be the test-patch
pairs generated by Fix2Fit, AFL and AFLGo, respectively. We regard
p ∈ Pi as crash-free patch, if and only if the patched program by p
does not crash under any test t ∈ T1 ∪T2 ∪T3. Then, we evaluate
the percentage of crash-free patches of different techniques.

We answer RQ3 by evaluating how many plausible patches can
be further ruled out if the newly generated tests are empowered
with a few oracles. For any test case which is able to break one
partition into several sub-partitions, it finds semantic discrepancies
between patches. However, the sub-partitions cannot be ruled out if
the patched programs do not crash, even though they show different
behaviors. We can thus study the reduction in the pool of candidate
patches if detailed oracles (such as expected output) for a few (say 5)
tests are available. Assuming better oracle of test is given and each
subpartition has equal probability to be filtered out, we evaluate
the number of patches that can be ruled out (Fig. 7).

All the experiments are conducted in the crash exploration mode9

of fuzzer. We start the fuzzing process with the failing test case
as seed corpus, and terminate it on timeout. As in state-of-the-art
fuzzing experimentation, we set timeout as 24 hours; at the same
time we report the effectiveness of our patch pool reduction for
smaller values of timeout such as 8 hours. Meanwhile, we set time
(timex in Equation 1) to enter "exploitation" as four hours. The
experiments are conducted on a device with an Intel Xeon CPU
E5-2660 2.00GHz process (56 cores) 64G memory and 16.04 Ubuntu.

7.3 Results
RQ1: Effectiveness in ruling out plausible patches. Figure 5
shows the percentage of plausible patch that is ruled out by AFL,
AFLGo and Fix2Fit within 8 and 24 hours, where the percentage
of filtered patch within the first 8 hours is marked using diago-
nal stripes. Note that the AFL-based approach is almost same as

9https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html

Crash-Avoiding Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Proj4 Libarchive FFmpeg Openjpeg Libssh Libchewing

Fix2Fit(24) Fix2Fit(8) AFLGo(24) AFLGo(8) AFL(24) AFL(8)

Figure 5: Percentage of plausible patches that are ruled out

Opad [15], except that we utilize a more precise over-fitting mea-
sure. For each project, we give the average number of all defects.
Compared with AFL and AFLGo, Fix2Fit rules out more plausible
patches for all those six subjects within both 8 and 24 hours. For
instance, Fix2Fit filters out 61% plausible patches for FFmpeg, while
only 52% of them are ruled out by AFL and 53% by AFLGo within 24
hours. Since fuzzing algorithms involve random decision, we run
each experiment ten times independently and report the Vargha-
Delaney statistic measure (Â12) [36] in Table 4. Vargha-Delaney
statistic is a recommended standard measure for evaluating random-
ized algorithms [37], which measures the probability that running
Fix2Fit rules out more patches than running AFL. Fix2Fit performs
better than AFL when Â12 is greater than 0.5. The evaluation results
show that Fix2Fit outperforms AFL on all six subjects.

Table 4: The averaged Â of each project with ten runs.

Projects Proj.4 Libarchive FFmpeg Openjpeg Libssh Libchewing
Â12 0.70 0.79 0.74 0.68 0.61 0.54

To investigate the reason why Fix2Fit is able to rule out more
patches, we give the number of tests generated by each technique
that can filter out plausible patches in Table 5. On average, Fix2Fit
generates 23% more tests that can rule out patches than AFL, and
18% more than AFLGo.
Table 5: The number of generated test cases that can rule out
plausible patches

Projects AFL(Opad) AFLGo Fix2Fit
Proj.4 4.8 5.9 12.5
Libarchive 11.2 12.8 16.0
FFmpeg 9.8 10.2 13.8
Openjpeg 35.3 35.8 50.3
Libssh 5.1 7.9 8.6
Libchewing 10.7 11.5 11.5

To filter out over-fitted patches, fuzzing in Fix2Fit is guided to
generate tests that can uncover semantic discrepancies between
plausible patches. Therefore, we also evaluate the patch partition
refinement effectiveness of AFL, AFLGo and Fix2Fit. Figure 6 shows
the number of generated tests that can refine partitions and number
of patch partitions after refinement. Origin is the number of test-
equivalence patch partitions with respect to the provided test suite.

Libchewing #Partition #Test Libchewing %Patches #Test
Origin 40.15 AFL 0.90 10.69
AFL 81.08 9.90 AFLGo 0.90 11.46
AFLGo 80.31 10.00 H_pr 0.92 11.77
H_pr 85.38 11.77 Fix2Fit 0.95 11.46
Fix2Fit 93.00 13.08

f

0
2
4
6
8
10

0
8

16
24
32
40

Origin AFL AFLGo Fix2Fit

Proj4
#Partition
#Test

0
16
32
48
64
80

0
50

100
150
200
250

Origin AFL AFLGo Fix2Fit

Libarchive

0
20
40
60
80
100

0
60

120
180
240
300

Origin AFL AFLGo Fix2Fit

FFmpeg

0
16
32
48
64
80

0
60

120
180
240
300

Origin AFL AFLGo Fix2Fit

Openjpeg

0

5

10

15

20

0
20
40
60
80

100

Origin AFL AFLGo Fix2Fit

Libssh

0
3
6
9
12
15

0
20
40
60
80

100

Origin AFL AFLGo Fix2Fit

Libchewing

N
um

be
r o

f p
la

us
ib

le
pa

tc
he

s

Figure 6: Number of patch partitions and the number of gen-
erated tests that can break patch partitions

The histogram represents the number of partitions after refinement,
which corresponds to the primary axis (left), while the line chart
shows the number of partition-refining tests, which corresponds
to the secondary axis (right). Fix2Fit performs better than AFL
and AFLGo in both generating partition-refining tests and refined
partitions. On average, Fix2Fit breaks 34% and 30% more partitions
than AFL and AFLGo, respectively.

Although we argue that partition refinement is a better heuristic
than patch filtering for the purpose of guiding fuzzing, we also
evaluate heuristics based on patch filtering. For patch filtering based
heuristic, we change the definition of separability in Equation 4 to

separability(t ′) =
r (t ′)

maxt ∈Tnew r (t)
(7)

where r (t ′) represents the number of crashing (hence over-fitted)
patches that are ruled out by test t ′. Table 6 shows the percentage of
patches that are ruled out using the heuristic based on patch filtering
(PF) and partition refinement (PR). The results show PR outperforms
PF on five subjects and performs equally on one subject.

Fix2Fit is able to rule out 18% and 12% more over-fitted
patches than AFL and AFLGo based approaches.

Table 6: % of plausible patches ruled out using partition re-
finement (PR) and patch filtering (PF) based heuristic

Projects Proj.4 Libarchive FFmpeg Openjpeg Libssh Libchewing
PF 68% 27% 56% 55% 51% 92%
PR 71% 28% 61% 56% 51% 95%

RQ2: Crash-free patches. To fix a bug, new bugs or secu-
rity vulnerabilities should not be introduced. If one generated
test makes the patched program crash, a patch will be directly
ruled out. However, since fuzzing does not exhaustively generate
all possible tests, the remaining patches may still cause program
crash or introduce new software crashes and vulnerabilities. In this
experiment, we evaluate the crash-freedom of patches generated
via cross-validation. Based on cross-validation, a crash-free patch
should not make program crash under any test cases generated by
any techniques. Table 7 shows the percentage of crash-free patches
generated by AFL, AFLGo, Fix2Fit. Compared with AFL and AFLGo,
our technique significantly improves the percentage of crash-free
patches. On average, Fix2Fit generates 96.3% crash-free patches,

ISSTA ’19, July 15–19, 2019, Beijing, China Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury

while 85.4% and 87% patches generated by AFL and AFLGo are
crash-free. Especially for Proj.4, over 99.5% patches generated by
Fix2Fit is crash-free, compared with 92% of AFL and 90% of AFLGo.

Table 7: The percentage of crash-free patches generated by
AFL, AFLGo, Fix2Fit

Subject AFL(Opad) AFLGo Fix2Fit
Proj.4 92% 90% 99%
Libarchive 88% 96% 97%
FFmpeg 84% 86% 95%
Openjpeg 82% 85% 91%
Libssh 83% 83% 99%
Libchewing 94% 94% 99%

Although most of patches generated by Fix2Fit are crash-free,
there are some patches (3.7%) which cause program to crash un-
der the tests generated by AFL or AFLGo. Fix2Fit may miss some
corner cases since it enters the “exploitation” mode after sufficient
“exploration”, while AFL and AFLGo keep broadly searching.

Fix2Fit could significantly improve the percentage of crash-
free patches, and more that 96% patches are crash-free.

RQ3: Improvement with better oracles. The ability of test
cases to filter out over-fitted patches is limited by the non-availability
of oracles (or expected output) of the generated tests. We also eval-
uate whether the automatically generated test case can further
reduce plausible patches if empowered with better oracles (for at
least a few of the generated tests).

Figure 7 shows how the number of patch candidates reduces as
the number of tests empowered with oracles. For a test which can
break a patch partition into several sub-partitions, we assume only
one of sub-partitions is correct if the correct behavior of this test
is given. This is because the patch partitions rely on a value-based
test equivalence; it is highly possible that only one of the sub-
partitions produces an output value same as the expected output.
We select the top-10 tests with highest separability (heuristic based
on partition refinement), and collect the number of patches if one,
two...ten oracles are given. Generally, the plausible patches for most
of the defects can be reduced to a reasonable number. For defects
in Openjpeg, the number of plausible patches can be reduced to
around 20. In other words, if the oracles of a few tests are available,
the pool of candidate patches can be reduced sufficiently so that the
remaining patches can be examined manually by the developers.

Table 8: Number of remaining partitions after refinement

Projects Proj.4 Libarchive FFmpeg Openjpeg Libssh Libchewing
#Partition 4.8 74.4 98.9 47.3 28.3 1.3

For the defects which are left with large number of plausible
patches, we are faced with the task of examining these remaining
plausible patches. Fortunately, developers do not need to examine
the remaining patches one by one. They can examine the patches in
the same patch partition together, since they show same behaviors
over all the available tests. Table 8 shows the average number of
remaining patch partitions after the partition refinement by Fix2Fit.

FFmpeg 941.4615 585 368 252 182 144 122
Openjpeg 467.1 242 149 97 68 50 37
Libssh 741 381 201 144 116 102 92
Libchewing 139.3846 89 74 64 58 55 53

f

0

120

240

360

480

600

0 1 2 3 4 5 6 7 8 9 10

Openjpeg

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10

Number of oracles

Libssh

0

30

60

90

120

150

0 1 2 3 4 5 6 7 8 9 10

Libchewing

75

81

87

93

99

105

0 1 2 3 4 5 6 7 8 9 10

Proj.4

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10

FFmpeg

0

300

600

900

1200

1500

0 1 2 3 4 5 6 7 8 9 10

Libarchive

N
um

be
r o

f p
la

us
ib

le
pa

tc
he

s

Figure 7: Number of plausible patches that can be reduced if
the tests are empowered with more oracles

The number of remaining partitions, and hence the number of
patches to examine, varies between 1-100 in each project. We feel
that there might be opportunities for visualization techniques to
choose from these remaining 1−100 patch partitions, using criteria
such as syntactic or semantic "distance" from the buggy program.

The plausible patches can be reduced to a reasonable num-
ber if few tests (<10) are empowered with better oracles.

7.4 Threats to Validity
Our current experiments have been conducted for one-line fixes.
While extension of the approach to multi-line fixes is entirely fea-
sible, it can blow up the search space. While we have compared
with Opad [15], we could not directly compare with [18, 19] which
improve patch quality by test generation; the tools for those ap-
proaches are geared to repair Java programs while our repair infra-
structure operates on C programs. Finally, our reported results are
obtained from the OSS-Fuzz subjects in Table 3, and more experi-
ments could be conducted on larger set of subject programs.

8 CONCLUSION
Automated program repair, specifically test-suite driven program
repair, has gained traction in recent years. This includes a recent
use of test-driven automated repair at scale in Facebook [38], re-
porting positive developer feedback. However, the automatically
generated patches can over-fit the test suite T driving the repair,
and their behavior on tests outside T is unknown. In this paper, we
have taken a step towards tackling this problem by filtering crash
introducing patch candidates via fuzz testing. Our solution inte-
grates fuzzing and automated repair tightly by modifying a fuzzer
to prioritize tests which can rule out large segments of the patch
space, represented conveniently as patch partitions. Results from
the continuous fuzzing service OSS-Fuzz from Google show signifi-
cant promise. By systematically prioritising crash-avoiding patches
in the patch search space, we take a step to tackle the over-fitting
problem in program repair.

ACKNOWLEDGMENTS
This work was supported in part by Office of Naval Research
grant ONRG-NICOP-N62909-18-1-2052. This work was partially
supported by the National Satellite of Excellence in Trustworthy
Software Systems, funded by NRF Singapore under National Cyber-
security R& D (NCR) programme.

Crash-Avoiding Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

REFERENCES
[1] Website. American fuzzy lop, http://lcamtuf.coredump.cx/afl/. Accessed: 2018-

12-18.
[2] Website. libfuzzer - a library for coverage-guided fuzz testing. https://llvm.org/

docs/LibFuzzer.html. Accessed: 2018-12-21.
[3] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.

Genprog: A generic method for automatic software repair. IEEE Transactions on
Software Engineering, page 54, 2012.

[4] Fan Long and Martin Rinard. Staged program repair with condition synthesis.
In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering,
pages 166–178. ACM, 2015.

[5] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The
strength of random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering, pages 254–265. ACM, 2014.

[6] Sergey Mechtaev, Xiang Gao, Shin Hwei Tan, and Abhik Roychoudhury. Test-
equivalence analysis for automatic patch generation. ACM Transactions on
Software Engineering and Methodology, 27(4):15, 2018.

[7] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. Semfix: Program repair via semantic analysis. In Proceedings of the 35th
International Conference onSoftware Engineering, pages 772–781. IEEE, 2013.

[8] J. Xuan, M. Martinez, F. Demarco, M. Clement, S.L. Marcote, T. Durieux, D. Le
Berre, and M. Monperrus. Nopol: Automatic repair of conditional statement bugs
in java programs. IEEE Transactions on Software Engineering, 43, 2017.

[9] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Directfix: Looking for
simple program repairs. In Proceedings of the 37th International Conference on
Software Engineering, pages 448–458. IEEE, 2015.

[10] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th International Conference on Software Engineering, pages 691–701. ACM, 2016.

[11] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch
generation learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering, pages 802–811. IEEE, 2013.

[12] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. Context-
aware patch generation for better automated program repair. In International
Conference on Software Engineering. ACM, 2018.

[13] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. Is the cure worse
than the disease? overfitting in automated program repair. In Proceedings of the
10th Joint Meeting on Foundations of Software Engineering, pages 532–543. ACM,
2015.

[14] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury. Anti-
patterns in search-based program repair. In Proceedings of the 24th International
Symposium on Foundations of Software Engineering, pages 727–738. ACM, 2016.

[15] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better test cases for
better automated program repair. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 831–841. ACM, 2017.

[16] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. Alleviating patch overfitting with automatic test generation: a study
of feasibility and effectiveness for the nopol repair system. Empirical Software
Engineering, pages 1–35, 2018.

[17] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering, pages
416–419. ACM, 2011.

[18] Qi Xin and Steven P Reiss. Identifying test-suite-overfitted patches through test
case generation. In Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 226–236. ACM, 2017.

[19] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. Identi-
fying patch correctness in test-based program repair. In Proceedings of the 40th
International Conference on Software Engineering, pages 789–799. ACM, 2018.

[20] David Shriver, Sebastian Elbaum, and Kathryn T Stolee. At the end of synthesis:
narrowing program candidates. In IEEE/ACM 39th International Conference on

Software Engineering: New Ideas and Emerging Technologies Results Track, pages
19–22. IEEE, 2017.

[21] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2329–2344. ACM, 2017.

[22] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana. Nezha: Efficient
domain-independent differential testing. In 2017 IEEE Symposium on Security
and Privacy, pages 615–632. IEEE, 2017.

[23] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
USENIX Symposium on Operating Systems Design and Implementation, volume 8,
pages 209–224, 2008.

[24] Paul Dan Marinescu and Cristian Cadar. Katch: high-coverage testing of software
patches. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 235–245. ACM, 2013.

[25] Raul Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessan-
dro Orso, and Mary Jean Harrold. Test-suite augmentation for evolving software.
In 23rd IEEE/ACM International Conference on Automated Software Engineering,
pages 218–227. IEEE, 2008.

[26] Dawei Qi, Abhik Roychoudhury, and Zhenkai Liang. Test generation to expose
changes in evolving programs. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, pages 397–406. ACM, 2010.

[27] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed
incremental symbolic execution. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2011.

[28] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing. In Proceedings
of the Network and Distributed System Security Symposium, 2017.

[29] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of patch plau-
sibility and correctness for generate-and-validate patch generation systems. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis,
pages 24–36. ACM, 2015.

[30] René Just, Michael D Ernst, and Gordon Fraser. Efficient mutation analysis by
propagating and partitioning infected execution states. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, pages 315–326. ACM,
2014.

[31] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence
modulo inputs. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 216–226, 2014.

[32] Scott Kirkpatrick, C Daniel Gelatt, andMario P Vecchi. Optimization by simulated
annealing. science, 220(4598):671–680, 1983.

[33] Fan Long and Martin Rinard. Automatic patch generation by learning correct
code. ACM SIGPLAN Notices, 51(1):298–312, 2016.

[34] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. The ManyBugs and IntroClass
benchmarks for automated repair of C programs. IEEE Transactions on Software
Engineering, 41(12):1236–1256, December 2015.

[35] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, pages 437–440.
ACM, 2014.

[36] András Vargha and Harold D Delaney. A critique and improvement of the
cl common language effect size statistics of mcgraw and wong. Journal of
Educational and Behavioral Statistics, 25(2):101–132, 2000.

[37] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability, 24(3):219–250, 2014.

[38] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, and
A. Scott. Sapfix: Automated end-to-end repair at scale. In ACM/IEEE International
Conference on Software Engineering, Track Software Engineering in Practice, 2019.

http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Background
	4.1 Program Repair
	4.2 Greybox Fuzzing

	5 Methodology
	5.1 Integration of Test Generation and Repair
	5.2 Separability of Test Cases
	5.3 Power Schedule
	5.4 Is Interesting?
	5.5 Sanitizer as Oracles

	6 Implementation
	7 Evaluation
	7.1 Benchmark Selection
	7.2 Experimental Setup
	7.3 Results
	7.4 Threats to Validity

	8 Conclusion
	References

