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ABSTRACT
Despite great success in many applications, deep neural networks
are not always robust in practice. For instance, a convolutional neu-
ron network (CNN) model for classification tasks often performs
unsatisfactorily in classifying some particular classes of objects.
In this work, we are concerned with patching the weak part of
a CNN model instead of improving it through the costly retrain-
ing of the entire model. Inspired by the fundamental concepts of
modularization and composition in software engineering, we pro-
pose a compressed modularization approach, CNNSplitter, which
decomposes a strong CNN model for 𝑁 -class classification into 𝑁

smaller CNN modules. Each module is a sub-model containing a
part of the convolution kernels of the strong model. To patch a weak
CNN model that performs unsatisfactorily on a target class (TC),
we compose the weak CNN model with the corresponding module
obtained from a strong CNN model. The ability of the weak CNN
model to recognize the TC can thus be improved through patch-
ing. Moreover, the ability to recognize non-TCs is also improved,
as the samples misclassified as TC could be classified as non-TCs
correctly. Experimental results with two representative CNNs on
three widely-used datasets show that the averaged improvement
on the TC in terms of precision and recall are 12.54% and 2.14%,
respectively. Moreover, patching improves the accuracy of non-TCs
by 1.18%. The results demonstrate that CNNSplitter can patch a
weak CNN model through modularization and composition, thus
providing a new solution for developing robust CNN models.
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1 INTRODUCTION
Modularization and composition are fundamental concepts in soft-
ware engineering, which facilitate software development, reuse,
and maintenance by dividing an entire software system into a set of
smaller modules. Each module is capable of carrying out a certain
task or separating a certain concern. For instance, when debugging
a buggy program, testing and patching the module that contains
the bug will be much easier than analysing the entire program.

Recently, convolutional neural networks (CNNs) have become
one of the most effective deep learning models for processing a
variety of tasks, such as image classification [17], object detec-
tion [9], and semantic segmentation [23]. However, obtaining a
strong CNN model with high accuracy is still very challenging, as
it requires a large amount of quality data, careful data preprocess-
ing, appropriate model structure, and proper model training and
hyperparameter tuning strategies. A small problem in the model
construction process could result in a weak model (e.g., underfitting
or overfitting model) with low accuracy. To improve the accuracy
of weak models, the CNN models often need to be retrained with
new data, model structure, training strategies, or hyperparameter
values. As the neural networks are getting deeper and the numbers
of parameters and convolution operations are getting larger, the
time and computational resources required for training the CNN
models are rapidly growing [15, 20].

At a conceptual level, a CNN model is analogous to a program,
and a mis-prediction of a CNN model is analogous to a program
failure [24, 29]. Inspired by the application of modularization and
composition in program debugging, it is natural to ask can the con-
cepts of modularization and composition be applied to CNN models
and facilitate the improvement of weak CNN models? Through mod-
ularization and composition, the weak modules in a weak CNN
model can be identified and patched separately; thus, the weak
model can be improved without costly retraining the entire model.

However, decomposing CNNmodels into modules is challenging:
(1) Different from traditional programs where each statement is
readable, neural network models are composed of a set of neurons
connected by uninterpretable parameter matrix. Without fully un-
derstanding the effect and function of each parameter, decomposing
models into different modules is hard. (2) The connections between
neurons in a neural network are complex and dense, hence it is hard
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Figure 1: An example of using a module to patch a weak
CNN model.

to identify the relationship between neurons and prediction tasks
(i.e., classify neurons into different modules). Recently, researchers
have studied techniques that decompose a fully connected neuron
networks (FCNNs) model for 𝑁 -class classification into 𝑁 modules,
one for each class in the original model [26]. They achieved model
decomposition by uncompressed modularization, which removes a
part of the weight of the neurons from a trained FCNNmodel. How-
ever, due to the weight sharing [19, 49] in CNNs, the relationship
between weights and neurons in CNNs is many-to-many rather
than many-to-one as in FCNNs. Removing the weight for one neu-
ron in CNNs will influence all other neurons as well. As a result,
this approach [26] cannot be applied to CNN models. Although the
follow-up work [27] can be applied to decompose CNN models,
it is still an uncompressed modularization approach. The uncom-
pressed modularization [26, 27] sets individual neurons or weights
to 0, which does not change a module’s structure and results in a
module with the same number of weights as the original model (to
be discussed in Section 6.1).

To address the above challenges, in this paper, we propose a com-
pressedmodularization approach, named CNNSplitter, to decompose
a CNN model into separate modules. Inspired by the finding that
different convolution kernels are used to extract different features
in the data [49], we generate modules by removing the irrelevant
convolution kernels in a CNN model. Compared to the original
model, the module produced by compressed modularization has
a different structure and fewer weights, resulting in less module
reuse overhead than uncompressed modularization. To decompose
a trained CNN model for 𝑁 -class classification, we formulate the
modularization problem as a search problem. Search-based algo-
rithms have been proven to be very successful in solving software
engineering problems [11, 21]. Given a space of candidate solutions,
search-based approaches usually search for the optimal solution
over the search space according to a user-defined objective function.
In the context of model decomposition, the candidate solution is
defined as a set of sub-models containing a part of the CNNmodel’s
kernels, while the search objective is to search 𝑁 sub-models (as 𝑁
modules) with each of them recognizing one class.

To patch a weak CNN model that achieves low performance on a
target class (TC), as shown in Figure 1, we compose the weak CNN
model with the corresponding module obtained from a strong CNN
model. The ability of the weak CNN model to recognize the TC
can be improved through the patch, as the patch (i.e., the patching
module) comes from a strong model and can classify the TC better.
During the prediction phase, the patched CNN model executes
the weak CNN model and the patch in parallel. The prediction for

the TC of the weak CNN model is replaced with that of the patch,
resulting in the final prediction of the patched CNN model. Note
that, the model is defined as strong when it preforms better on TC
than the weak model. The weak model can be patched instead of
being completely replaced by the strong model, since the weak
model may outperform the strong model on some non-TCs and
some non-TCs may not even be supported by the strong model.

We evaluate CNNSplitter using two representative CNN mod-
els with different structures (i.e., with and without residual con-
nections [12]) on three widely-used datasets (i.e., CIFAR-10 [16],
CIFAR-100 [16] and SVHN [25]). The experimental results show that
decomposing a trained CNN model into modules with CNNSplitter
and then composing the modules to build a new CNN model is
functionally similar to the original one. CNNSplitter does not cause
much loss of performance in terms of model accuracy (-2.89% on
average). In addition, each module retains 56.76% of the convolu-
tion kernel of the trained CNN model on average. To validate the
effectiveness of applying a module as a patch to improve weak
CNN models, we conduct experiments for three common types of
weak models, i.e., overly simple model, underfitting model [24],
and overfitting model [24, 51]. Overall, after patching, the averaged
improvements on TC in terms of precision, recall, and F1-score
are 12.54%, 2.14%, and 7.52%, respectively. Moreover, on non-TCs,
94% of patched models outperform the weak models in terms of
accuracy, with an average gain of 1.18%. The detailed results and
discussion are presented in Section 5.

The main contributions of this work are as follows:
• We propose an approach, named CNNSplitter, to decomposing
a CNN model into a set of reusable modules. We also apply
CNNSplitter to patchweakmodels without retraining. To our best
knowledge, CNNSplitter is the first compressed modularization
approach that can decompose trained CNN models into CNN
modules and reduce the overhead of module reuse.

• We formulate the modularization of CNNs as a search problem
and design a genetic algorithm to solve it. Especially, we propose
the importance-based kernels grouping, the sensitivity-based
initialization, and the pruning-based evaluation to alleviate the
problem of excessive search space and time complexity in CNN
modularization.

• We conduct extensive experiments using two representative CNN
models on three widely-used datasets. The results show that
CNNSplitter can decompose a trained CNN model into modules
without significant loss of model accuracy. Also, the experiments
demonstrate the effectiveness of applying a module as a patch.

2 BACKGROUND
2.1 Convolutional Neuron Networks
A typical CNN contains convolutional layers, pooling layers, and
fully connected (FC) layers, of which the convolutional layers are
the core of a CNN [39, 49]. Figure 2 shows an overview of a simple
CNN architecture. A convolutional layer contains many convolu-
tion kernels, each of which learns to recognize a local feature of
an input tensor [19, 49]. An input tensor can be the input image
or a feature map produced by the previous convolutional layer or
pooling layer. As shown in Figure 4, by sliding over the input tensor,
a convolution kernel calculates the convolution of input tensor and
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Figure 2: The architecture of a typical CNN model.

the kernel. Since a convolution kernel slides over the input tensor to
match features and produce a feature map, all values in the feature
map share the same convolution kernel. For instance, in the feature
map of Figure 4, the values in the top-left (7) and top-middle (3)
share the same kernel, i.e., weight. Weight sharing [19, 49] is one
of the key features of a convolutional layer. The values in a feature
map reflect the degree of matching between the kernel and the
input tensor. For instance, compared to the position in the input
tensor corresponding to the top-middle (3) in the feature map, the
position corresponding to the top-left (7) is more similar to the
kernel. A pooling layer provides a sampling operation. The most
popular form of pooling operation is max pooling, which reduces
the dimensionality of the feature maps via downsampling operation.
FC layers are usually at the end of CNNs and are used to make
predictions based on the features extracted from the convolutional
and pooling layers.

2.2 Genetic Algorithm
Inspired by the natural selection process, the genetic algorithm
performs selection, crossover, and mutation for several generations
(i.e., rounds) to generate solutions for a search problem [13, 36].
A standard genetic algorithm has two prerequisites, i.e., the rep-
resentation of an individual and the calculation of an individual’s
fitness. For instance, the genetic algorithm is used to search for high-
quality CNN architectures [34, 47]. An individual is a bit vector
representing a NN architecture [47], where each bit corresponds to
a convolution layer. The fitness of an individual is the classification
accuracy of a trained CNN model with the architecture represented
by the individual. During the search, in each generation, the selec-
tion operator compares the fitness of individuals and preserves the
strong ones as parents that obtain high accuracy. The crossover op-
erator swaps part of two parents. The mutation operator randomly
changes several bit values in the parents to enable or disable these
convolution layers corresponding to the changed bit values. After
the three operations, a new population (i.e., a set of individuals)
is generated. And the process continues with the new generation
iteratively until it reaches a fixed number of generations or an
individual with the target accuracy is obtained.

3 MODULARIZATION OF CNN MODELS
Figure 3 shows the overall workflow of CNNSplitter. For a given
trained 𝑁 -class CNN model M={𝑘0, 𝑘1, . . . , 𝑘𝐿−1} with 𝐿 convolu-
tion kernels, the modularization process is summarized as follows:

(1) Construction of Search Space: CNNSplitter encodes each candi-
date module into a fixed-length bit vector, where each bit represents
whether the corresponding kernels are kept or not. The bit vectors
of all candidate modules constitute the search space.

(2) Search Strategy: From the search space, the search strategy
employs a genetic algorithm to find modules for 𝑁 classes.

(3) Performance Estimation: The performance estimation strategy
measures the performance (i.e., fitness) of the searched candidate
and guides the search process.

3.1 Search Space
As shown in Figure 3, the search space is represented using a set of
bit vectors. For a CNN model with a lot of kernels, the size of vector
could be very long, resulting in an excessively large search space,
which could seriously impair the search efficiency. For instance,
10-class VGGNet-16 [39] includes 4,224 kernels, so the number of
candidate modules for each class is 24224. In total, the size of the
search space will be 10 × 24224. To reduce the search space, the
kernels in a convolutional layer are divided into groups. A simple
way is to randomly group kernels; however, this could result in a
group containing both kernels necessary for a module to recognize
a specific class and those that are unnecessary. The randomness in-
troduced by random grouping cannot be eliminated by subsequent
searches, resulting in unnecessary kernels in the searched modules.

To avoid unnecessary kernels as much as possible, an importance-
based grouping scheme is proposed to group kernels based on their
importance. As introduced in Section 2, the values in a feature map
can reflect the degree of matching between a convolution kernel
and an input tensor. The kernels producing feature maps with weak
activations are likely to be unimportant, as the values in the feature
map with weak activations are generally small (and even zero) and
have little effect on the subsequent calculations of the model [20].
Inspired by this, CNNSplitter measures the importance of kernels
for each class based on the feature maps. Specifically, given𝑚 sam-
ples labeled class 𝑛 from the training dataset, a kernel outputs𝑚
feature maps. We calculate the sum of all values in each feature
map and use the average of𝑚 sums to measure the importance of
the kernel for class 𝑛. Then 𝐿 kernels are divided into 𝐺 groups
following the importance order. Consequently, a module is encoded
into a bit vector [0, 1]𝐺 , where each bit represents whether the cor-
responding group of kernels is removed. The number of candidate
modules for the 𝑛-th class is 2𝐺 , and for 𝑁 classes, the search space
size is reduced to 𝑁 × 2𝐺 .

For simplicity, if the number of kernels in a convolutional layer
is less than 256, the kernels are divided into 10 groups; otherwise,
they are divided into 100 groups. In this way, each kernel group has
a moderate number of kernels (i.e., 1̃0) and groups in the same con-
volutional layer have approximately the same number of kernels.

3.2 Search Strategy
A genetic algorithm [47] is used to search CNN modules, which has
been widely used in search-based software engineering [8, 41]. The
search process starts by initializing a population of 𝑁𝐼 individuals
for each of 𝑁 classes. Then, CNNSplitter performs 𝑇 generations,
each of which consists of three operations (i.e., selection, crossover,
and mutation) and produces 𝑁𝐼 new individuals for each class. The
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fitness of individuals is evaluated via a performance estimation
strategy that will be introduced in Section 3.3.

3.2.1 Sensitivity-based Initialization. In the 0-th generation, a set
of modules 𝑀0

𝑛 = {𝑚0
𝑛,𝑖

}𝑁𝐼 −1
𝑖=0 are initialized for class 𝑛, where

𝑛 = 0, 1, . . . , 𝑁 − 1 and𝑚0
𝑛,𝑖

is a bit vector [0, 1]𝐺 . Two schemes are
used to set the bits in each individual (i.e., module): random initial-
ization and sensitivity-based initialization. Random initialization is
a common scheme [5, 47]. Each bit in an individual is independently
sampled from a Bernoulli distribution. However, random initializa-
tion causes the search process to be slow or even fail (see Section
5.3). We observed a phenomenon that some convolutional layers are
sensitive to the removal of kernels, which has been also observed
in network pruning [20]. That is, the accuracy of a CNN model
dramatically drops when some particular kernels are dropped from
a sensitive convolutional layer, while the loss of accuracy is not
more than 0.01 when many other kernels (e.g., 90% of kernels) are
dropped from an insensitive layer.

To evaluate the sensitivity of each convolutional layer, we drop
out 10% to 90% kernels in each layer incrementally and evaluate
the accuracy of the resulting model on the validation dataset. If
the loss of accuracy is small (e.g., within 0.05) when 90% kernels in
a convolutional layer are dropped, the layer is insensitive, other-
wise, it is sensitive. When initializing𝑚0

𝑛,𝑖
using sensitivity-based

initialization, fewer kernel groups are dropped from the sensitive
layers while more kernel groups from the insensitive layers. More
specifically, a drop ratio is randomly selected from 10% to 50% for a
sensitive layer (i.e., 10% to 50% bit values are randomly set to 0). In
contrast, a drop ratio is randomly selected from 50% to 90% for an
insensitive layer.

3.2.2 Selection, Crossover, and Mutation. For class 𝑛, to generate
the population (i.e., modules) of the 𝑡-th generation, CNNSplit-
ter performs selection, crossover, and mutation operations on the
(𝑡 − 1)-th generation’s population 𝑀𝑡−1

𝑛 . First, the selection op-
eration selects 𝑁𝑃 individuals from𝑀𝑡−1

𝑛 as parents according to
individuals’ fitness. Then, the single-point crossover operation gen-
erates two new individuals by exchanging part of two randomly
chosen parents from 𝑁𝑃 parents. Next, the crossover operation it-
erates until 𝑁𝐼 new individuals are produced. Finally, the mutation
operation on the 𝑁𝐼 new individuals involves flipping each bit inde-
pendently with a probability 𝑝𝑀 . For 𝑁 classes, selection, crossover,
and mutation operations are performed in parallel, resulting in a
total of 𝑁 × 𝑁𝐼 modules.

3.3 Performance Estimation Strategy
A module with high fitness should have the same good identifica-
tion ability as the trained modelM and only recognize the features
of one specific class. Two evaluation metrics are used to evaluates
the fitness of modules: the accuracy and the difference of modules.
The higher the accuracy, the stronger the ability of the module
to recognize features of the specific class. On the other hand, the
greater the difference, the more a module focuses on the specific
class. In addition, the difference can be used as a regularization to
prevent the search from overfitting the accuracy, as the simplest
way to improve accuracy is to allow each module to retain all the
convolution kernels of M. Consequently, the fitness of a module is
the weighted sum of the accuracy and the difference. Furthermore,
when calculating the fitness, a pruning strategy is used to improve
the evaluation efficiency, making the performance estimation strat-
egy computationally feasible.

3.3.1 Evaluation Metrics. Since a module focuses on a specific class
and is equivalent to a single-class classifier, we combine modules
into a composed model (CM) to evaluate them. That is, one module
is selected from each class’s 𝑁𝐼 modules, and the 𝑁 modules are
combined into a 𝐶𝑀 (𝑁 ) for 𝑁 -class classification. The 𝐶𝑀 (𝑁 ) is
evaluated on the same classification task as M using the dataset
𝐷 . The accuracy of 𝐶𝑀 (𝑁 ) and the difference between the mod-
ules within 𝐶𝑀 (𝑁 ) are assigned to each module. Specifically, the
accuracy and difference of each module are calculated as follows:

Accuracy (Acc). To calculate the Acc of 𝐶𝑀 (𝑁 ) , the 𝑁 modules
are executed in parallel, and the output of 𝐶𝑀 (𝑁 ) is obtained by
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Figure 5: The process of removing convolution kernels.

combiningmodules’ outputs. Specifically, given a𝐶𝑀 (𝑁 )={𝑚𝑛}𝑁−1
𝑛=0 ,

the output of module𝑚𝑛 for an input 𝑗 labeled 𝑐𝑙𝑎𝑠𝑠 𝑗 is a vector
𝑂𝑛,𝑗=[𝑜0𝑛, 𝑜1𝑛, . . . , 𝑜𝑁−1

𝑛 ], where each value corresponds to a class.
Since𝑚𝑛 is used to recognize class 𝑛, the 𝑛-th value 𝑜𝑛𝑛 is retained.
Consequently, the output of 𝐶𝑀 (𝑁 ) is 𝑂 𝑗=[𝑜00, 𝑜

1
1 . . . , 𝑜

𝑁−1
𝑁−1], and

the Acc of 𝐶𝑀 (𝑁 ) is calculated as follows:

𝐴𝑐𝑐 =
1
|𝐷 |

|𝐷 |∑︁
𝑗

𝑝𝑟𝑒𝑑 ( 𝑗), (1)

𝑝𝑟𝑒𝑑 ( 𝑗) =


1, if argmax

𝑛=0,1,...,𝑁−1
𝑂 𝑗 = 𝑐𝑙𝑎𝑠𝑠 𝑗

0, if argmax
𝑛=0,1,...,𝑁−1

𝑂 𝑗 ≠ 𝑐𝑙𝑎𝑠𝑠 𝑗 .
(2)

Difference (Diff). Since a module can be regarded as a set of
convolution kernels, the difference between two modules can be
measured by the Jaccard Distance (JD) that measures the dissimilar-
ity between two sets. The JD between set𝐴 and set 𝐵 is obtained by
dividing the difference of the sizes of the union and the intersection
of two sets by the size of the union:

𝐽𝐷 (𝐴, 𝐵) = |𝐴 ∪ 𝐵 | − |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | . (3)

If the 𝐽𝐷 (𝐴, 𝐵) = 1, there is no commonality between set 𝐴 and set
𝐵, and if it is 0, then they are exactly the same. Based on JD, the Diff
value of 𝐶𝑀 (𝑁 ) is the average value of JD between all modules:

𝐷𝑖 𝑓 𝑓 =
𝑁 × (𝑁 − 1)

2
×

∑︁
0≤𝑖< 𝑗≤𝑁−1

𝐽𝐷 (𝑚𝑖 ,𝑚 𝑗 ) . (4)

Based on Acc and Diff, the fitness value of 𝐶𝑀 (𝑁 ) is calculated via:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ×𝐴𝑐𝑐 + (1 − 𝛼) × 𝐷𝑖 𝑓 𝑓 , (5)

where 𝛼 is a weighting factor and 0 < 𝛼 < 1. In practice, 𝛼 is set
to a high value (e.g., 0.9) because high accuracy is a prerequisite
for the availability of modules. The fitness value of 𝐶𝑀 (𝑁 ) is then
assigned to the 𝑁 modules within 𝐶𝑀 (𝑁 ) . Since each module is
used in multiple CMs, a set of fitness values is assigned to each
module. The maximum value of the set is a module’s final fitness.

3.3.2 Decode. To evaluate modules, each bit vector is transformed
into a runnable module by removing the kernel groups from M
corresponding to the bits of value 0. Since removing kernels from a
convolutional layer affects the convolutional operation in the later

convolutional layer, the kernels in the latter convolutional layer
need to be modified to ensure that the module is runnable.

Figure 5 shows the process of removing convolution kernels.
During the convolution, the three kernels 𝑘0,∗ ∈ R3×3 in 𝑙𝑎𝑦𝑒𝑟0
output three feature maps 𝐹0,∗ ∈ R4×4 that are then combined in a
feature map 𝐹𝑐 ∈ R3×4×4 and fed to 𝑙𝑎𝑦𝑒𝑟1. By sliding on 𝐹𝑐 , kernels
𝑘1,∗ ∈ R3×3×3 in 𝑙𝑎𝑦𝑒𝑟1 perform the convolution and output two
feature maps 𝐹1,∗ ∈ R2×2. If 𝑘0,1 in 𝑙𝑎𝑦𝑒𝑟0 is removed, the feature
map 𝐹0,1 generated by 𝑘0,1 is also removed. The input of 𝑙𝑎𝑦𝑒𝑟1
becomes a different feature map 𝐹

′
𝑐 ∈ R2×4×4, the dimension of

which does not match that of 𝑘1,∗ ∈ R3×3×3 in 𝑙𝑎𝑦𝑒𝑟1, causing the
convolution to fail.

To solve the dimension mismatch problem, we remove the part
of 𝑘1,∗ that corresponds to 𝐹0,1, ensuring the first dimension of
𝑘1,∗ to match with that of 𝐹

′
𝑐 . For instance, since 𝐹0,1 is removed,

𝑘1,0 [1, :, :], which performs convolution on 𝐹0,1, becomes redundant
and causes the dimension mismatch. We remove 𝑘1,0 [1, :, :] and the
transformed kernel 𝑘

′
1,0 ∈ R2×3×3 can perform convolution on 𝐹

′
𝑐 .

In addition, since the residual connection adds up the feature
maps output by two convolutional layers, the number of kernels
removed from the two convolutional layers must be the same to
ensure that the output feature maps match in dimension. When
constructing a bit vector, we treat the two convolutional layers as
one layer and use the same segment to represent the two layers so
that they always remove the same number of kernels.

3.3.3 Pruning-based Evaluation. Since the fitness of each module
comes from the one with the highest fitness among the CMs the
module participates in, the number of 𝐶𝑀 (𝑁 ) that CNNSplitter
needs to evaluate is (𝑁𝐼 )𝑁 . The time complexity is 𝑂 (𝑛𝑁 ), which
could be too high to finish the evaluation in a limited time. To reduce
the overhead, a pruning strategy is designed, which is based on the
following fact: if the accuracy of𝐶𝑀 (𝑁 ) is high, the accuracy of the
𝐶𝑀 (𝑛) (e.g., 𝐶𝑀 (2) for the binary classification) composed of the
modules within the𝐶𝑀 (𝑁 ) is also high. If the accuracy of a module
is low, the accuracy of the 𝐶𝑀 (𝑛) containing the module is also
lower than the 𝐶𝑀 (𝑛) containing modules with high accuracy. In
addition, the number of𝐶𝑀 (𝑛) is much smaller than that of𝐶𝑀 (𝑁 ) .
For instance, the 𝑁 -class classification task can be decomposed into
𝑁 /2 binary classification subtasks, resulting in 𝑁 /2× (𝑁𝐼 )2 𝐶𝑀 (2) .

Therefore, the 𝑁 -class classification task is decomposed into sev-
eral subtasks. The accuracy of𝐶𝑀 (𝑛) is evaluated, and the top 𝑁𝑡𝑜𝑝

𝐶𝑀 (𝑛) with high accuracy are selected to be combined into𝐶𝑀 (𝑁 ) .
Through continuous evaluation, selection, and composition, a total
of (𝑁𝑡𝑜𝑝 )2 𝐶𝑀 (𝑁 ) are composed. The time complexity is 𝑂 (𝑛2),
which is lower than the original time complexity 𝑂 (𝑛𝑁 ).

4 PATCHING WEAK CNN MODELS THROUGH
MODULARIZATION AND COMPOSITION

The weak CNN model can be improved by patching the target class
(TC). To identify the TC of a weak CNN model, developers can use
test data to evaluate the weak CNN model’s classification perfor-
mance (e.g., precision and recall) of each class. The class in which
the weak CNN model achieves poor classification performance is
regarded as TC. As illustrated in Figure 6, the TC is replaced with
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Figure 6: Patching a weak CNN model.

the corresponding module from a strong model. To find the cor-
responding module, a developer can evaluate the accuracy of a
candidate model on TC. If the candidate model’s accuracy exceeds
that of the weak model, it can be used as a patch.

Formally, given a weak CNN model M𝑤 , suppose there exists
a strong CNN modelM𝑠 whose classification task intersects with
that of M𝑤 . For instance, both M𝑤 and M𝑠 can recognize TC 𝑛.
Then, the corresponding module 𝑚𝑛 from M𝑠 can be used as a
patch to improve the ability of M𝑤 to recognize TC 𝑛. Specifically,
M𝑤 and 𝑚𝑛 are composed into a CM that is the patched CNN
model. Given an input,M𝑤 and𝑚𝑛 run in parallel and the outputs
of them are𝑂𝑤 = [𝑜𝑤0 , 𝑜

𝑤
1 , . . . , 𝑜

𝑤
𝑁−1] and𝑂

𝑝 = [𝑜𝑝0 , 𝑜
𝑝

1 , . . . , 𝑜
𝑝

𝑁−1],
respectively. Then, the output𝑂𝐶𝑀 of CM is obtained by replacing
the prediction corresponding to TC 𝑛 of 𝑂𝑤 with that of 𝑂𝑝 .

A straightforward way is to directly replace 𝑜𝑤𝑛 with 𝑜𝑝𝑛 , and the
index of the maximum value in 𝑂𝐶𝑀 = [𝑜𝑤0 , . . . , 𝑜

𝑝
𝑛 , . . . , 𝑜

𝑤
𝑁−1] is

the predicted class. However, the comparison between 𝑜𝑝𝑛 and the
other values in𝑂𝐶𝑀 is problematic: sinceM𝑤 andM𝑠 are different
models that are trained on the different datasets or have different
network structures, there could be significant differences in the
distribution between the outputs of M𝑤 and M𝑠 . For instance, we
have observed that the output values of a model could be always
greater than that of the other one, resulting in the outputs of a mod-
ule decomposed from the strong model being always larger/smaller
than the outputs of a weak model. This problem could cause error
prediction when calculating the prediction of CM; thus, 𝑂𝑤 and
𝑂𝑝 are normalized before the replacement. Specifically, since the
outputs on the training set can reflect the output distribution of
a module, we collect the outputs of𝑚𝑛 on the training data with
the class label 𝑛. Then, the minimum and maximum values of the
output’s distribution can be estimated using the collected outputs.
For instance, (𝑚𝑖𝑛,𝑚𝑎𝑥) are the minimum and maximum values
of the collected outputs of𝑚𝑛 . The normalized 𝑜𝑝𝑛 is 𝑜

𝑝
𝑛−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛 . In
addition, the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 is used over 𝑂𝑤 to scale the values in 𝑂𝑤

between 0 and 1. Finally, the prediction of CM is obtained by replace
𝑜𝑤𝑛 in normalized 𝑂𝑤 with normalized 𝑜𝑝𝑛 .

5 EXPERIMENTS
5.1 Research Questions
We evaluate CNNSplitter to answer following research questions:

• RQ1: How effective is CNNSplitter in modularizing CNN
models? Modularization should ensure that modules retain suf-
ficient ability (i.e., sufficient convolution kernels) to recognize
features. On the other hand, compared to the trained CNNmodel,
the smaller the module (i.e., the fewer convolution kernels), the
lower the memory and computational overhead from the patch.
In this research question, the modularization results of four mod-
els are used to validate whether CNNSplitter can strike a balance
between the module’s ability and its size.

• RQ2: Can weak CNN models be improved through mod-
ularization and composition? In this research question, we
conduct experiments for three common types of weak CNN mod-
els, i.e., overly simple, underfitting, and overfitting models, to
validate the effectiveness of applying a module as a patch to
improve a weak CNN model.

• RQ3: How effective are the three heuristic methods in
CNNSplitter?As described in Section 3, we propose three heuris-
tic methods in the design of CNNSplitter, namely importance-
based grouping, sensitivity-based initialization, and pruning-
based evaluation. In this RQ, we evaluate the effectiveness of
these methods.

5.2 Dataset and Models
The following three datasets are used to evaluate CNNSplitter,
which are also widely used in related research [7, 27] on deep
learning testing.

CIFAR-10. The CIFAR-10 [16] dataset is used to train strong
CNN models. CIFAR-10 contains natural images with resolution
32 × 32, which are drawn from 10 classes including airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. The training
and test sets contain 50,000 and 10,000 images respectively. For
CIFAR-10, 10,000 images are selected from the training set to form
the validation set.

CIFAR-100. The CIFAR-100 [16] dataset is used to train weak
models. CIFAR-100 consists of 32× 32 natural images in 100 classes,
with 600 images per class. There are 500 training images and 100
testing images per class. To reduce the time overhead required to
train weak models, a subset of CIFAR-100 is built, consisting of 9
classes: apple, baby, bed, bicycle, bottle, bridge, camel, clock, and
rose. Each class in CIFAR-10 is considered as TC in turn and merged
with the subset, resulting in ten 10-class classification datasets. The
ten datasets are used to train weak models. The proportion for
training, validation, and testing data is 8:1:1.

SVHN. The Street View House Number (SVHN) dataset [25]
contains colored digit images 0 to 9 with resolution 32 × 32. All
the 604,388 training images are used, 20% of them are chosen for
validation. The test set contains 26,032 images. A subset of SVHN,
namely SVHN-S, includes images of 𝑐𝑙𝑎𝑠𝑠𝑠 = {0, 1, 2, 3, 4} and is
used to train strong models. Five subsets of SVHN, namely SVHN-
W, are used to train weak models, and each subset includes images
of 𝑐𝑙𝑎𝑠𝑠𝑤 = {6, 7, 8, 9,𝑇𝐶}, where 𝑇𝐶 ∈ 𝑐𝑙𝑎𝑠𝑠𝑠 .

The following two CNNmodels are used to evaluate CNNSplitter:
SimCNN is constructed by stacking convolutional layers, which

represents a basic structure CNN and is similar to LeNet [19],
AlexNet [17], and VGGNet [39]. The output of each convolutional
layer can only flow through each layer in sequential order. Without
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Table 1: The modularization results of CNNSplitter.

Model Name Trained Model Composed Model Avg. # Kernels
in a ModuleAcc # Kernels Acc Diff

SimCNN-CIFAR 0.8977 4224 0.8607 0.5277 2617
SimCNN-SVHN 0.9541 4224 0.9385 0.6161 2230
ResCNN-CIFAR 0.9041 4288 0.8564 0.5648 2498
ResCNN-SVHN 0.9506 4288 0.9352 0.6046 2317
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Figure 7: The impact of major parameters.

loss of generality, SimCNN in our experiments is set to contain
13 convolutional layers and 3 FC layers, totally 4,224 convolution
kernels.

ResCNN is constructed by convolutional layers and residual
connections, which represents a complex structure of CNNs and is
similar to ResNet [12], WRN [52], and MobileNetV2 [37]. A residual
connection can go across one or more convolutional layers, allow-
ing the output of a layer not only to flow through each layer in
sequential order, but also to be able to connect with any following
layer. Without loss of generality, ResCNN in our experiments is set
as 12 convolutional layers, 1 FC layer, and 3 residual connections,
totally 4,288 convolution kernels.

All the experiments are conducted on Ubuntu 20.04 server with
64 cores of 2.3GHz CPU, 128GB RAM and NVIDIA Ampere A100
GPUs with 40 GB memory.

5.3 Experimental Results
RQ1: How effective is CNNSplitter in modularizing CNN mod-
els?

To answer RQ1, four CNN models are trained from scratch and
modularized by CNNSplitter. Specifically, SimCNN and ResCNN
are trained on CIFAR-10 and SVHN-S from scratch, resulting in four
strong CNN models: SimCNN-CIFAR, SimCNN-SVHN, ResCNN-
CIFAR, and ResCNN-SVHN.On both CIFAR-10 and SVHN-S datasets,
SimCNN and ResCNN are trained with mini-batch size 128 for 200
epochs. The initial learning rate is set to 0.01 and 0.1 for SimCNN
and ResCNN, respectively, and the initial learning rate is divided
by 10 at the 60-th and 120-th epoch for SimCNN and ResCNN re-
spectively. All the models are trained using data augmentation [38]
and SGD with a weight decay [18] of 10−4 and a Nesterov momen-
tum [43] of 0.9.

The four trained CNNmodels are then modularized by CNNSplit-
ter. Specifically, when applying genetic algorithm to search CNN
modules, following the common practice [34, 35, 42], the number
of individuals 𝑁𝐼 and the number of parents 𝑁𝑃 in each generation

Table 2: The FLOPs of the original model and decomposed
modules

Model Name Model
FLOPs (M)

Module
FLOPs (M) Reduction

SimCNN-CIFAR 313.7 164.3 47.6%
SimCNN-SVHN 107.8 65.6%
ResCNN-CIFAR 431.2 225.4 47.7%
ResCNN-SVHN 142.1 67.0%

Average 57.0%

are set to 100 and 50, respectively. The mutation probability 𝑝𝑀 is
generally small [34, 42] and is set to 0.1. The weighting factor 𝛼 is
set to 0.9. For the sake of time, an early stopping strategy [10, 54] is
applied, and the maximum number of generations is set as 𝑇 = 200.
A trained CNN model M is modularized with reference to the vali-
dation set, which was not used in model training. After completing
the modularization, the resulting modules are evaluated on the
testing set.

When evaluating the resulting modules, the modules are first
composed to construct a new composed model 𝐶𝑀 that is func-
tionally equivalent to M (e.g., 10-class classification model for
CIFAR-10). Then the Acc of M and the Acc of 𝐶𝑀 are compared to
evaluate the ability of modules to recognize features. The closer the
Acc of 𝐶𝑀 is to the Acc of M, the better the ability of the modules
in𝐶𝑀 to recognize features is preserved. Diff is calculated to verify
whether there are differences between the modules for different fea-
tures. The closer the Diff is to 1, the greater the difference between
the modules. Furthermore, we calculate the number of convolution
kernels retained by each module. The fewer kernels are retained,
the less memory and computational overhead the patch brings.

Table 1 shows the modularization results of CNNSplitter on
the four trained CNN models: SimCNN-CIFAR, SimCNN-SVHN,
ResCNN-CIFAR, and ResCNN-SVHN. The Acc and Diff of the com-
posed CNN models are (0.8607, 0.5277), (0.9385, 0.6161), (0.8564,
0.5648), and (0.9352, 0.6046), respectively. Compared to the accu-
racy of the trained CNN models, the loss of accuracy caused by
modularization is 0.037, 0.0156, 0.0477, and 0.0154, respectively. The
average loss of accuracy is 0.0289, which demonstrates that the
composed CNN models without retraining have comparable accu-
racy to the trained CNN models. The comparable accuracy of the
composed CNN models suggests that the modules have sufficient
ability to recognize features. The averaged Diff is 0.5783, which
means that there are indeed differences among themodules.We also
count the number of convolution kernels in the modules for each
model. For SimCNN-CIFAR, SimCNN-SVHN, ResCNN-CIFAR, and
ResCNN-SVHN, the average number of modules’ kernels is 2617,
2230, 2498, and 2317, respectively. The modules of the four models
respectively drop 38.04%, 47.21%, 41.74%, and 45.97% kernels from
the original models. On average, the number of kernels of a module
is reduced by 43.24%, indicating that the memory and computation
costs of the module are smaller than the original model.

The memory and computation costs of modules are important
for DNN modularization, which incur module reuse overhead. The
memory and computation costs can be measured by the number
of weights (i.e., the number of kernels in Table 1) and the floating
point operations (FLOPs) [20], respectively. In this experiment, an
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open-source tool fvcore [6] is used to calculate the FLOPs required
by the modules or models to classify an image. As shown in Ta-
ble 2, for our approach, SimCNN-* and ResCNN-* require 313.7
million and 431.2 million FLOPs, respectively. The third column
shows the averaged FLOPs of modules, and the last column shows
the percentage of reduction in FLOPs over the original model. For
instance, the average FLOPs required by the modules of SimCNN-
CIFAR are 164.3 million, which are 47.6% lower than the FLOPs of
the originally trained model. On average, the FLOPs required by a
module are 57.0% lower than the original model. In contrast, uncom-
pressed modularization approaches [26, 27] incur higher module
reuse overhead. We analyze the open source projects [32, 33] pub-
lished by [26, 27], including source code files and the experimental
data (e.g., the trained CNNmodels and the generated modules). The
open-source tool keras-flops [45] is used to calculate the FLOPs
for the approach described in [26]. The FLOPs required by a mod-
ule in [26] are the same as those required by the original model.
For the project of [27], since the modules are not encapsulated as
Keras model, there are no ready-to-use, off-the-shelf tools to cal-
culate the FLOPs required by the modules. We manually analyze
the number of weights of the module and confirm that a module
has the same number of weights as the original model. In sum-
mary, the experimental results indicate that CNNSplitter incurs
less module reuse overhead than the uncompressed modularization
approaches [26, 27].

In addition, we investigate the impact of major parameters on
CNNSplitter, including 𝛼 (the weighting factor between the Acc and
theDiff, described in Sec. 3.3) and𝑁𝐼 (the number ofmodules in each
generation, described in Sec. 3.2). Figure 7 shows the “Generation”,
“Acc”, and “Diff” of the composed model on SimCNN-CIFAR with
different 𝛼 and 𝑁𝐼 . We find that, CNNSplitter performs stably under
different parameter settings in terms ofAcc andDiff. The changes in
the number of generations show that a proper setting can improve
the efficiency of CNNSplitter. The results also show that our default
settings (i.e., 𝛼 = 0.9 and 𝑁𝐼 = 100) are appropriate.

The average loss of accuracy caused by modularization is
0.0289. The number of kernels and FLOPs of a module are
reduced by 43.24% and 57.0%, respectively. Experimental
results demonstrate that CNNSplitter strikes a balance
between the module’s ability and its reuse overhead.

RQ2: Can weak CNN models be improved through modular-
ization and composition?

To answer RQ2, we conduct experiments on three common types
of weak CNN models, i.e., overly simple models, underfitting models,
and overfitting models. An overly simple model has fewer param-
eters than a strong model. To obtain the overly simple models,
simple SimCNN and ResCNN models are used. Specifically, a sim-
ple SimCNN contains 2 convolutional layers and 1 FC layer, while
a simple ResCNN contains 4 convolutional layers, 1 FC layer, and 1
residual connection. An underfitting model has the same number of
parameters as a strong model, but is trained with a small number of
epochs. To obtain the underfitting models, the model is trained at
the 𝑛𝑏𝑒𝑠𝑡

2 -th epoch, which can neither well fit the training dataset

Table 3: Precision of weak models and patched models on
CIFAR. All results are in %.

Model TC Simple Underfitting Overfitting

weak patch weak patch weak patch

SimCNN

airplane 78.49 82.93 45.37 73.61 54.29 65.52
automobile 84.96 95.74 62.62 95.95 66.35 85.00

bird 70.53 85.07 33.06 72.22 50.81 74.65
cat 55.96 64.77 25.88 29.80 43.53 50.67
deer 69.39 80.25 42.47 66.94 62.20 73.53
dog 69.52 84.62 35.85 60.75 50.00 62.16
frog 74.07 77.67 34.58 47.18 57.63 74.74
horse 80.00 89.04 63.64 100.0 60.00 84.62
ship 75.73 81.72 100.0 75.00 67.29 74.23
truck 74.31 85.71 50.94 87.84 61.26 71.28

Average 73.30 82.75 49.44 70.93 57.34 71.64

ResCNN

airplane 72.32 84.71 40.00 79.17 63.73 77.03
automobile 87.25 100.0 67.80 100.0 56.30 87.01

bird 82.93 95.16 52.38 82.46 52.38 75.71
cat 73.75 90.00 60.00 56.38 55.56 71.70
deer 74.32 92.31 36.36 83.33 55.00 72.73
dog 67.77 77.23 36.70 67.53 47.87 57.69
frog 76.92 87.91 44.31 76.85 62.75 73.81
horse 81.40 92.54 39.22 86.67 58.59 86.15
ship 75.22 84.04 50.00 94.87 68.57 80.00
truck 89.16 95.95 28.74 89.29 54.21 78.95

Average 78.10 89.99 45.55 81.66 57.50 76.08

Table 4: Precision of weak models and patched models on
SVHN. All results in %.

Model TC Simple Underfitting Overfitting

weak patch weak patch weak patch

SimCNN

0 88.94 95.05 25.17 74.31 89.34 92.24
1 96.14 96.49 92.17 94.00 96.78 97.39
2 93.36 96.47 95.29 96.47 95.57 96.42
3 89.21 95.74 89.86 96.19 93.47 95.24
4 93.95 97.62 87.97 94.88 93.66 95.34

Average 92.32 96.27 78.09 91.17 93.76 95.33

ResCNN

0 81.17 93.08 78.05 93.03 90.91 94.24
1 89.36 95.34 95.86 97.68 89.78 95.44
2 93.81 97.38 95.28 98.62 95.24 97.23
3 88.91 95.01 80.01 92.72 92.42 94.93
4 93.38 98.51 57.73 75.60 92.98 96.18

Average 89.33 95.86 81.39 91.53 92.27 95.60

nor generalize to the testing dataset. The accuracy of the under-
fitting model is low on both the training dataset and the testing
dataset, indicating the occurrence of underfitting. An overfitting
model is obtained by disableing some well-known Deep Learning
“tricks”, including dropout [40], weight decay [18], and data aug-
mentation [38]. These tricks are widely used to prevent overfitting
and improve the performance of a DL model. The overfitting model
can fit the training dataset and the accuracy on the training dataset
is close to 100%; however, its accuracy on the testing dataset is much
lower than that on the training dataset, indicating the occurrence
of overfitting. Except for the special design above, the same settings
are applied as presented in RQ1.

We assume that the weak model may outperform the strong
model on some non-TCs or some non-TCs may not be supported by
the strong model. The weak model can be improved instead of being
thrown away. In this experiment, a weak model can recognize only
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the TC as well as classes that are not recognized by a strong model
(see Section 5.2). Therefore, each module in a strong model is used
in turn as a patch to improve a weak model in recognizing the cor-
responding TC. As a result, a total of 90 weak models are obtained,
among which, 60 weak models for CIFAR-100 (10 classes with each
class has 3 weak models for SimCNN and ResCNN, respectively)
and 30 weak models for SVHN-W (5 classes with each class has 3
weak models for SimCNN and ResCNN, respectively). Finally, given
a set of overly simple, underfitting, and overfitting models, the
effectiveness of using modules as patches can be validated by quan-
titatively and qualitatively measuring the improvement of weak
models. Specifically, the ability of a weak model to recognize a TC
can be evaluated in terms of precision and recall. Precision is the
fraction of the data belonging to TC among the data predicted to
be TC. Recall indicates how much of all data, belonging to TC that
should have been found, were found. F1-score is used as a weighted
harmonic mean to combine precision and recall.

Table 3 and Table 4 show the performance of weak models and
patched models in terms of precision on CIFAR-100 and SVHN-W,
respectively. If the patched weak model performs better than the
weak model, the result is in bold. For CIFAR-100, the results in Table
3 suggest that patched weak models improve precision on 100%
(20/20) of simple models, 90% (18/20) of underfitting models, and
100% (20/20) of overfitting models. The average gain of precision
is 18.64%. The failure of the two underfitting models to improve
precision could be due to their extremely low recall (i.e., 5% and 3%),
whereas patching improves their recall (to 63% and 53%) rather than
precision. For SVHN-W, the results in Table 4 suggest that patched
models improve the precision of all the simple, underfitting, and
overfitting models. The average improvement in precision is 6.44%.

Table 5: Average recall (upper half) and F1-score (bottom
half) of weak models and patched models. All results in %.

Model Dataset Simple Underfitting Overfitting

weak patch weak patch weak patch

SimCNN CIFAR 74.50 70.20 36.90 65.00 59.40 57.70
SVHN 93.04 91.31 77.55 85.96 92.43 91.71

ResCNN CIFAR 74.30 68.70 39.00 53.60 57.90 55.80
SVHN 94.68 90.91 84.18 79.14 93.28 91.79

SimCNN CIFAR 73.76 75.68 35.46 64.59 58.14 63.60
SVHN 92.67 93.71 77.71 88.38 93.08 93.46

ResCNN CIFAR 75.66 77.13 34.43 63.05 57.51 64.09
SVHN 91.88 93.30 79.63 82.31 92.70 93.61

The results of Recall and F1-score are summarized in Table 5.
As shown in the upper half of Table 5, on average, the gains of
recall on SimCNN and ResCNN are 4.68% and -0.57%, respectively.
The recall values of some patched models decrease, as there is
often an inverse relationship between precision and recall [2, 3].
However, the improvement in F1-score indicates that, in general,
weak models can be improved through patching. The bottom half
of Table 5 summarizes the results of F1-score, showing the average
F1-score of weak models and patched weak models. On average,
the improvements in F1-score are 8.10% and 6.94% for SimCNN
and ResCNN, respectively. Overall, the average improvements of
90 patched weak models in terms of precision, recall, and F1-score
are 12.54%, 2.14%, and 7.52%, respectively. Due to space limitation,

the detailed results of the Recall and F1-score are available at the
project webpage [30].

Table 6: Average accuracy of weak models and patched
models on non-TCs. All results in %.

Model Dataset Simple Underfitting Overfitting

weak patch weak patch weak patch

SimCNN CIFAR 77.45 78.23 42.72 43.31 58.59 59.47
SVHN 88.88 89.94 73.97 75.13 91.14 91.52

ResCNN CIFAR 81.16 81.96 42.80 44.53 60.25 61.28
SVHN 88.06 90.14 74.99 78.82 90.36 91.53

Besides the improvement in recognizing TC, another concern is
whether the patch affects the ability to recognize other classes (i.e.,
non-TCs). To evaluate the patch’s effects on non-TCs, the samples
belonging to TC are removed, and weak models and patched models
are evaluated on the samples belonging to non-TCs. Finally, the ef-
fect of the patch on non-TCs is validated by comparing the accuracy
of weak models to patched models. The experimental results [30]
are summarized in Table 6. Overall, 94% (85/90) of patched models
outperform the weak models, and the average accuracy improve-
ment of 90 patched models is 1.18%. The reason for performance
improvement is that some samples that belong to non-TCs but
were misclassified as TC are correctly classified as non-TCs after
patching. The results indicate that the patching does not impair but
rather improves the ability to recognize non-TCs.

Moreover, for the costs of prediction, patching does not incur
extra time costs, as the patch and the weak CNNmodel are executed
in parallel. The GPUmemory consumption of the weak and patched
CNN models is about 1.7GB and 2.6GB, respectively. Although the
patch incurs extra GPU memory consumption, the overhead of
reusing a module as a patch is much lower than that of reusing an
entire model.

The average improvements on TC in precision, recall, and
F1-score are 12.54%, 2.14%, and 7.52%, respectively. Also,
the average accuracy improvement on non-TCs is 1.18%.
Experimental results demonstrate that patching can im-
prove weak models not only on TC but also on non-TCs.

RQ3:How effective are the three heuristicmethods inCNNSplit-
ter?

In RQ3, to evaluate the effectiveness of the proposed importance-
based grouping and sensitivity-based initialization, CNNSplitter
executes with different grouping (No, Random, Importance) and
initialization (Random, Sensitivity) methods. Each trained CNN
model is modularized with these configurations. To validate the
effectiveness of pruning-based evaluation, CNNSplitter executes
with and without pruning. To measure the effectiveness of these
heuristics, we compare Acc and which generation obtains the best
modules under different configurations.

Importance-based grouping. Table 7 shows the evaluation
results under different configurations. For SimCNN-CIFAR and
SimCNN-SVHN, modularization fails with no grouping and ran-
dom grouping due to the significant loss of accuracy. For ResCNN-
CIFAR, the modularization also fails with no grouping. Although
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Table 7: The results of modularization in different
configurations.

Model Name Modularization Methods Composed Model

Grouping Initialization Generation Acc

SimCNN-CIFAR

No Sensitivity 194 0.2754
Random Sensitivity 190 0.3650

Importance Random 192 0.3702
Importance Sensitivity 123 0.8607

SimCNN-SVHN

No Sensitivity 200 0.2430
Random Sensitivity 200 0.2512

Importance Random 188 0.9204
Importance Sensitivity 79 0.9385

ResCNN-CIFAR

No Sensitivity 83 0.7271
Random Sensitivity 193 0.8420

Importance Random 197 0.8432
Importance Sensitivity 185 0.8564

ResCNN-SVHN

No Sensitivity 140 0.9027
Random Sensitivity 162 0.9249

Importance Random 179 0.9332
Importance Sensitivity 107 0.9352

the modularization with random grouping is successful on ResCNN-
CIFAR, the results in terms of Acc and generation are much worse
than importance-based grouping. Similarly, no grouping and ran-
dom grouping work on ResCNN-SVHN; however, both they lose
more accuracy and require a larger number of generations when
compared to the importance-based grouping. We believe that our
importance-based grouping can significantly improve search effi-
ciency by reducing the size of the search space.

Sensitivity-based initialization.As shown in Table 7, the mod-
ularization with the random initialization fails on SimCNN-CIFAR
due to the significant loss of accuracy. While on SimCNN-SVHN,
ResCNN-CIFAR, and ResCNN-SVHN, the random initialization is
successful; however, compared to the sensitivity-based initializa-
tion, the accuracy decreases slightly, and the number of generations
increases a lot. Sensitivity-based initialization method can signif-
icantly improve the efficiency of the search by providing a good
starting point.

Pruning-based evaluation. The pruning strategy can signif-
icantly reduce the time complexity of module evaluation. In the
absence of the pruning strategy, there are a total of 10010 CMs to
be evaluated in each generation. The number of CMs is so large
that each generation takes several years to evaluate, resulting in a
timeout and modularization failure. With the pruning strategy, a
10-class classification task is decomposed into five 2-class classifi-
cation tasks. Four of five 2-class classification tasks are composed
into two 4-class classification tasks that are then composed into
an 8-class classification task. The 8-class classification task and the
remaining 2-class classification task are composed into the final
10-class classification task. Consequently, the number of CMs is
5× 1002 + 2× (𝑁𝑡𝑜𝑝 )2 + (𝑁𝑡𝑜𝑝 )2 + (𝑁𝑡𝑜𝑝 )2, which is much less than
10010. For instance, when𝑁𝑡𝑜𝑝 = 100, the number of CMs is 9×1002,
meaning that the pruning strategy reduces time complexity from
𝑂 (𝑛10) to𝑂 (𝑛2). This strategy enables the computation of accuracy
to be completed with acceptable overhead. In the experiments, the
time overhead per generation with pruning for SimCNN-CIFAR,
SimCNN-SVHN, ResCNN-CIFAR, and ResCNN-SVHN is 83s, 95s,
80s, and 93s, respectively.
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sparse 
0 0

0
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Figure 8: Compressed modularization vs. uncompressed
modularization.

In summary, the modularization results of the four models
demonstrate that importance-based grouping, sensitivity-
based initialization, and pruning-based evaluation can sig-
nificantly improve the efficiency of the search.

6 DISCUSSION
6.1 Compressed modularization vs.

uncompressed modularization
CNNSplitter is a compressed modularization approach, while the
existing approaches [26, 27] are based on uncompressed modu-
larization. As shown in Figure 8, compressed modularization can
remove a sub-structure from a module’s weight matrix, resulting in
a smaller weight matrix. In a CNN model, the convolution kernel is
a sub-structure. As demonstrated in Section 5.3 (RQ1), by removing
convolution kernels, the number of weights in a module can be
reduced, and hence the computation cost of a module is less than
that of the original model.

In contrast, uncompressedmodularization [26, 27] sets individual
neurons or weights to 0, thereby achieving the effect of removing
the neurons or weights from CNN models to produce modules. As
shown in Figure 8, a module produced by uncompressed modular-
ization has the same number of weights as the original model. As
discussed in Section 5.3, the computation cost of a module produced
by [26] is the same as that of the original model.

The difference between compressed and uncompressed modular-
ization discussed above has large impact on module reuse overhead,
which is an important concern for the modularization of DNN.
The module reuse overhead is the memory and computation cost
for reusing modules, which can be measured by the number of
weights and FLOPs. As shown in Table 1 and Table 2, the modules
produced by CNNSplitter have fewer kernels and FLOPs than the
original model, indicating that compressed modularization incurs
less module reuse overhead than uncompressed modularization.

6.2 Threats to Validity
External validity: Threats to external validity relate to the gen-
eralizability of our results. There are some CNN models that have
different structures from that of SimCNN and ResCNN. The results
might not be generalizable to these CNN models. Moreover, the re-
sults are not validated on other datasets for different tasks. However,
SimCNN and ResCNN are representative CNN models and their
structures are widely used in various tasks. Many different CNN
models can be seen as variants of SimCNN and ResCNN. In addition,
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CIFAR-10, CIFAR-100, and SVHN are representative datasets and
are widely used for evaluation in related researches [7, 27]. More-
over, an assumption behind our work is that only a part of classes
of weak model are overlapped with the classes of a strong model,
or the strong model only outperforms the weak model on part of
the classes. For the scenarios where the classes recognized by the
strong model is a superset of the classes recognized by the weak
model and the strong model performs better on all the classes, de-
velopers could directly use the strong model instead of patching the
weak model. In future work, more experiments will be conducted
on a variety of models and datasets to alleviate this threat.

Internal validity: An internal threat comes from the choice of
datasets for evaluation. To mitigate this threat, in this study we use
the CIFAR-10, CIFAR-100, and SVHN datasets from Pytorch, which
are well organized and widely used.

Construct validity: In this study, a threat relates to the suit-
ability of our evaluation metrics. We use accuracy and Jaccard
distance-based difference as the evaluation metrics. These metrics
have also been used in other related work [26, 27].

7 RELATEDWORK
Uncompressed modularization of DNNs: The closest work to ours
is uncompressed modularization [14, 26, 27], which decompose a
DNN model into modules by removing weights or neurons. Pan et
al. [26] first proposed determining whether neurons and weights
are relevant for recognizing a specific class according to whether
the neurons are activated and generating a module by removing
the weights and neurons that are irrelevant for recognizing the
specific class. However, [26] is unsuitable for CNN models due to
the weight sharing in CNNs [49]. To modularize CNN models, Pan
et al. [27] used a map to record at which positions a convolution
kernel produces irrelevant neurons (i.e., inactive neurons) in the
modularization phase and set the values of irrelevant neurons to
zero in the prediction phase. Kingetsu et al. [14] applied the edge-
popup algorithm [31] to learn a supermask for each module that
records which weights in the trained model are retained by a mod-
ule. These uncompressed modularization methods produce modules
with the same size of weight matrices as the original model, which
could introduce large overhead in module reuse. In contrast, our
work is compressed modularization, which generates modules with
smaller weight matrices, leading to less overhead in module reuse.

Reusing neural networks: Our work is related to the work on
reusing neural networks, such as transfer learning [4, 28] and con-
ditional computation [15, 50]. Transfer learning techniques develop
a new model by reusing the entire or a part of a model trained
on the other dataset and then fine-tuning the reused model on
the new dataset. For instance, BERT [4] is widely-used to develop
new models for various downstream tasks by changing the heads
(i.e., the output layers) and fine-tuning on the new dataset. Con-
ditional computation aims to increase model capacity without a
proportional increase in computation cost. For instance, Kirsch et
al. [15] construct a dynamic network structure consisting of mod-
ules and controllers, which activates the different portion of the
entire network for the different input. The techniques mentioned
above attempt to reuse; however, they either need to retrain (fine-
tuning) the reused model [4] or cannot be used to develop a new

model [15, 50]. In contrast, this work modularizes a CNN model so
that a module can be reused as a patch to improve a weak CNN
model without retraining.

DNN Debugging: Existing DNN debugging techniques improve
DNNs mainly by providing more training data [24]. One of the
mainstream DNN debugging techniques is the generation tech-
nique [1, 44, 48, 53], which generates new training samples that
are similar to the provided input data samples. For instance, Deep-
Hunter [48] and DeepTest [44] generate new images by mutating
an original image with metamorphic mutations such as pixel value
transformation and affine transformation. DeepRoad [53] and info-
GAN [1] are based on the generative adversarial network, which
train a generator and a discriminator, and use the generator to
generating new images. Another popular technique is the prioriti-
zation technique [7, 46], which can find the possibly-misclassified
data from massive unlabeled data. The possibly-misclassified data,
rather than total data, are manually labeled first and added into the
training dataset to improve a DNN. Unlike the existing DNN debug-
ging techniques focusing on retraining models with more training
data, this work focuses on patching models without retraining.

Neural Architecture Search: Neural architecture search (NAS)
techniques [22, 34] construct the optimal neural network structure
by searching combinations of network layers, layer connections,
activation methods, and so on. CNNSplitter searches modules from
a trained CNN model. Apart from their differences in objectives,
there are some other differences between CNNSplitter and NAS.
For instance, genetic CNN [22] encodes CNN model architectures
into bit vectors and applies a genetic algorithm to search. Each
bit of bit vectors represents whether or not a connection between
two convolutional layers is required. While in CNNSplitter, each
bit of bit vectors represents whether a kernel group is retained;
thus, the approach of genetic CNN cannot be directly applied to
modularization. Moreover, CNNSplitter includes three heuristic
methods (see Section 3) to improve the efficiency of search, which
are also different from genetic CNN.

8 CONCLUSION
In this work, we explore how a CNN model can be decomposed
into a set of smaller and reusable modules so that a module from a
strong CNN model can be used as a patch to improve a weak CNN
model without retraining. We propose a compressed modulariza-
tion approach, CNNSplitter, to address the modularity issue of CNN
models with a search-based method. The obtained modules can be
used as patches to improve the performance of weak CNN models.
We have evaluated CNNSplitter with two representative CNN mod-
els on three widely-used datasets. The experimental results confirm
the effectiveness of our approach.

Our source code and experimental data are available at https:
//github.com/qibinhang/CNNSplitter.
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