
Automated Fixing of Web UI Tests via Iterative
Element Matching

Yuanzhang Lin∗
Beihang University

Beijing, China
linyz2020@gmail.com

Guoyao Wen
Huawei Technologies Co., Ltd.

Shenzhen, China
wenguoyao@huawei.com

Xiang Gao†
Beihang University

Beijing, China
xiang gao@buaa.edu.cn

Abstract—Web UI test cases are used for the automatic
testing of web applications. When a web application is updated,
these UI tests should also be updated for regression testing of
the new version of web application. With the rapid evolution,
updating UI tests is a tedious and time-consuming task. To
solve these problems, automatically repairing web UI tests has
gained increasing attention recently. To repair web UI tests, the
most important step is to match the UI elements before and
after the web page update. Existing work matches UI elements
according to visual information, attributes value, or Document
Object Model (DOM) structures. However, they either achieve
low element matching accuracy or only work on simple UI tests.
To solve these problems, we proposed UITESTFIX, an approach
based on a novel iterative matching algorithm for improving
the accuracy of matching UI elements. UITESTFIX is designed
based on two main insights: (1) beyond attribute and DOM
structures, the relations between different elements can also guide
the matching process, and (2) the matching results of previous
iterations could guide the matching of the current iteration. Our
evaluation of publicly available datasets and two industrial apps
shows that UITESTFIX outperforms four existing approaches by
achieving more accurate element matching and producing more
correct fixes.

Index Terms—Iterative Element Matching, Web Testing, Test
Repair

I. INTRODUCTION

Web apps are characterized by rapid updates. Existing UI
test cases are often used as regression tests to ensure the
update does not affect original program behaviors. However,
during app evolution, developers may modify attributes in web
elements, causing the corresponding UI test cases to be broken
on the new versions. To make existing test cases executable
on the updated version, testers need to manually (1) execute
new test cases, (2) locate the bug, and (3) fix it, e.g., modify
the element locator of test cases. Updating broken UI tests
manually is time-consuming and labor-intensive. In recent
years, several techniques have been proposed in academia and
industry to automatically fix broken UI test cases caused by
app evolution [1], [2], [3], [4], [5].

To automatically fix broken web UI tests, one of the most
important steps is to repair its outdated element locator.
Existing approaches fix element locators by matching the UI

∗This work was primarily undertaken by the author during his internship at
Huawei while studying at the Southern University of Science and Technology.

†Corresponding author.

elements before and after update using either visual informa-
tion [2], [6], attributes [7] (e.g., identifier name), or Document
Object Model (DOM) structures [8], [3]. More specifically,
those approaches (1) collect the visual image, attributes, and
DOM structure of each element before and after the web page
update, (2) compare the similarity of each pair of elements
using similarity metrics, (3) if the similarity of two elements
is greater than a threshold, they are identified as matched
elements. UI test repair tools can then fix the broken locators
of UI tests according to element matching results.

However, existing approaches still have some limitations.
First, their accuracy in matching UI elements is still quite
low. For instance, as shown in our evaluation (Section VI),
the state-of-the-art UI element matching tool SFTM achieves
68.8% accuracy, and the UI repair tool VISTA only achieves
46.7% accuracy. The low element matching accuracy will
then significantly decrease the effectiveness of automated UI
test repair techniques. Second, prior work mainly studied the
maintenance of UI tests on open-source web apps with test
cases written or translated (migrate test cases from other Cap-
ture–Replay tools to Selenium) by researchers. The manually
written or translated test cases are usually short and simple.

Moreover, designing a robust framework that can repair
complex industrial UI tests is challenging. For instance,
VISTA [2], a state-of-the-art repair framework, failed to repair
our provided industrial tests correctly because (1) industrial
web page tests have many control-flow branches, but VISTA
only supports tests with a single control flow, and (2) industrial
tests usually adopt Page Object design pattern for improving
test maintenance [9], but VISTA parses and extracts state-
ments using regular expressions, (3) industrial web tests may
invoke additional APIs on top of Selenium APIs to expand
its functionality but VISTA only supports specific Selenium
APIs.

To solve the above problem, we propose a general frame-
work UITESTFIX, for automatically fixing the UI tests of
practical and large-scale web applications. The core technique
of UITESTFIX is a novel iterative element-matching approach
that fully utilizes the DOM structure information. The main
insight is that the relative positions of elements and the
relations with neighboring elements may help to improve
matching accuracy. To capture such information, we propose
path similarity and region similarity to measure the similarity

of elements according to their relations. In an iterative process,
UITESTFIX first matches the elements that are more likely to
be matched with high confidence, and then current matching
results could guide the element matching in the following
iterations. More specifically, the workflow of UITESTFIX
is as follows: (1) it first simplifies the DOM structure by
grouping related elements of web pages; (2) calculates the
similarity according to id, attribute, DOM structure and etc.;
(3) relies on the iterative matching algorithm to continuously
recalculate the similarity and rematch the elements in multiple
iterations to improve the matching accuracy. Based on our
matching algorithm, we implemented the repair framework
for automatically fixing broken web UI tests. UITESTFIX
is a robust repair framework that includes a dynamic repair
component that can parse and repair the UI tests of all kinds
of web applications.

We evaluate UITESTFIX on a set of open source applica-
tions and industrial applications. In terms of element matching,
UITESTFIX correctly matched 2,141 (81.9%) elements, which
increased the correct rate by 16.1% compared with the best
result of existing tool SFTM (68.8%). Moreover, UITEST-
FIX and SFTM take similar time to generate matching
results (0.97s and 0.87s), which we believe is acceptable. To
compare the repairability of UITESTFIX with existing work,
we integrate the four element matching baseline approaches
(WATER [7], VISTA [2], WEBEVO [6], and SFTM [8])
into our repair framework (note that the existing tools do
not support the web applications used in our evaluations).
Evaluation results show that UITESTFIX can fix 113 (68%)
test cases, much higher than the 73 test cases (44%) of the best
existing tools. Our results indicate that UITESTFIX can match
more complex element changes and has a higher matching
accuracy rate and test case repair rate.
Contributions Our contributions are summarised as follows:
• We proposed a novel element matching algorithm that can

match UI elements more accurately by matching elements
in multiple iterations.

• We proposed path similarity and region similarity to mea-
sure the similarity of elements according to their relations.

• We design and implement a UI test repair framework,
UITESTFIX, and evaluate it by comparing it against
four state-of-the-art baselines. Evaluation results show that
UITESTFIX outperforms existing techniques.

• To facilitate future research on web UI element matching
and repair, we relabeled and augmented an open-source
UI element matching dataset, which contains 1,620 la-
belled UI elements. Our dataset and results are available
at https://anonymous.4open.science/r/Web-UI-Dataset-9645.

II. MOTIVATING EXAMPLE

In this section, we use an example of an open-source app
MRBS in the test cases dataset [4] to explain the shortcomings
of existing approaches [7], [2], [6], [8], and how UITESTFIX
fixes the broken test by matching elements.

Figure 1 shows the screenshots of the MRBS app for
versions 1.2.6.1 and 1.4.9, the simplified HTML code, and

driver.findElement(By.xpath("/html/body/form/input[3]")).click();

Thread.sleep(2000);

driver.findElement(By.xpath("//a[text()='Admin']")).click();

....

Assert.assertEquals(driver.findElement(By.xpath("//a[@href='admi
n.php']")).getText(), "Back to Admin");

2

1

3

1

3

1

3

version
1.2.6.1

version
1.4.9

(a) MRBS Web apps of version 1.2.6.1 and 1.4.9, and part of
the broken DeleteNegativeAreaTest.
<tr>
<td class="banner" bgcolor="#C0E0FF"

align="CENTER">

Admin
</td>... </tr>

(b) The simplified HTML code of the banner in version 1.2.6.1.
<tr>
<td>

<a href="admin.php?day=28;month=01;
area=888;room=409">Rooms

</td>...</tr>

(c) The simplified HTML code of banner in version 1.4.9.

Fig. 1: Motivating example of MRBS web page.

one simplified test. The broken test (DeleteNegativeAreaTest)
was manually translated to the Selenium test by the authors
of prior work [4]. It contains three events: 1 click the “Log
in” button, 2 sleep, and 3 click the “Admin” button. In
Figure 1b, we use eAdmin

o to denote the old element with
text Admin and ebano to represent the old element with tag tr,
which is a banner. Similarly, in Figure 1c, we use eRooms

n to
represent the element with text Rooms and ebann to represent
the element with tag tr. When MRBS evolved from 1.2.6.1 to
1.4.9, its view and attributes of elements changed drastically.
For instance, the text of eAdmin

o changed from “Admin” to
“Rooms”, the background color of eAdmin

o was changed from
blue to dark blue, which caused the visual change, the attribute
of eAdmin

o was extended with “area=888;room=409”, and
all the attributes of the ancestors of eAdmin

o (i.e., ebano) were
removed. The changes cause DeleteNegativeAreaTest to fail in
the new version. From the motivation example, we can obtain
the following observations:

Existing approaches usually match elements by matching
either their attributes [7], visual information [2], or both [6].
Due to the changes in the attributes and visual information,
the similarity between eAdmin

o and eRooms
n is low. Algorithms

https://anonymous.4open.science/r/Web-UI-Dataset-9645

based on text information [7], visual information [2], or
both [6] fail to match eAdmin

o with eRooms
n . The SFTM

algorithm [8], which matches attributes of the parent nodes
and child nodes for similarity propagation, also fails to match
eAdmin
o with eRooms

n because (1) the similarity score based on
attribute matching is quite low due to the changes in attributes,
and (2) the parent node of eAdmin

o do not share common
attribute tokens with the parent nodes of eRooms

n .
By investigating this example, we have the following obser-

vation: an element matching could depend on its neighboring
elements that have been matched. In this example, there are
multiple elements located in the banner ebano , including the
“Help” button, “Admin” button, “Report” button. Through the
word “admin.php” also appears elsewhere on the page, the
elements around eAdmin

n , e.g., the “Help” button of the old
and new version which can be easily matched, can be used
to distinguish eAdmin

n with the “admin.php” elements located
somewhere else. It indicates that element matching could also
be guided by the matching results of other elements.

From the observations, we could measure the similarity of
elements based on the following ideas.

• I1: Elements with closer matched ancestors are more
similar. For any element eo in the old version and any node
en in the new version, if they have the matched ancestor
(e.g., banner), we consider eo and en to be structurally
similar. If the matched ancestor is closer to eo and en (e.g.,
the child element of the banner), eo and en are more likely
to match due to higher structural similarity.

• I2: Ancestors with more common leaf elements are more
similar. For two ancestors (non-leaf elements), if most of
their leaf elements match, they are likely to be matched.
For example, if most of the buttons in the banner before
and after the version updates match, these banners tend to
be matched.

• I3: Matching elements by multiple iterations. Different
from existing approaches that rely on pre-defined similarity
metrics in one single step, we could perform an iterative
approach for matching. In each iteration, a matching result is
calculated. The next iteration will recalculate the similarity
based on the matching result and also update the matching
result. During the iterations, the higher-confident matching
results could help to increase the similarity of the lower-
confident matched elements through multiple iterations of
matching.

How does UITESTFIX match these elements? In the first
iteration, UITESTFIX has matched elements with high initial
similarities (e.g., the element with text Help). In the second
iteration, the structural similarities of ebano and ebann are
increased because the leaf nodes in the region represented
by ebano , i.e., the element with text “Help”, are matched in
the first iteration. Then, in the third iteration, because the
eAdmin
o is contained in ebano and eRooms

n is contained in
ebann , and ebano are matched with ebann , the structural similarity
between eAdmin

o and eRooms
n are increased. After the three

iterations, the similarity between eAdmin
o and eRooms

n is larger

than the threshold θ, so they can be matched. This example
shows the advantages of UITESTFIX: (1) when attributes
change significantly, using the matching results to calculate the
structural similarity can enhance the accuracy of the matching;
(2) in the process of multiple iterations, the elements in the
previous iteration could guide the matching of the remaining
elements. In some cases, the wrongly matched elements can
even be corrected during the iterative process (not shown in
this example).

With the matching results, UITESTFIX will then repair
the broken UI test by changing the locators of event 1
and event 3 . Specifically, UITESTFIX updates the locator
of the “Log in” button from “/html/body/form/input[3]” to
“//*[@id=“logon submit”]/input”, and the locator of “Admin”
button from “//a[text()=‘Admin’]” to “//a[text()=‘Rooms’]”.

III. BACKGROUND

We denote a web element as e. When the web application
is updated, test cases may fail due to the inability to locate
element e in the updated version. The automated UI test repair
tool fixes the test case by relocating the element e through the
element matching algorithm. Specifically, for an element eo
in the old version, the element matching algorithm needs to
find the corresponding element en in the new version page,
and the match result can be denoted as {eo 7→ en}. If there
is no matching result for eo, it will be considered a deleted
element. Similarly, when there is no match result for en, it
will be considered as an added element.

a) Existing element match method: The element match-
ing algorithm has been proposed for many years. The element
matching algorithm can be mainly divided into two categories,
element-based, and tree-based approaches. For the element-
based approach, the matching algorithm takes the old version
element eo and the element list En of the new version as input
and outputs the matching result {eo 7→ en}where en ∈ En.
Existing approaches check the similarity of elements by mea-
suring the similarity of elements’ attributes, e.g., WATER [7],
elements’ vision information, e.g., VISTA [2], and the com-
bination of attributes and vision, e.g., WEBEVO [6]. While the
DOM tree-based algorithm takes the old version Dom tree To
and the new version DOM tree Tn as inputs, and outputs the
matching result M, which includes all matching relationships
{eo 7→ en|eo ∈ To ∧ en ∈ Tn}. The tree-based method
can determine the final matching result by considering the
relationship between elements. The SFTM is the tree-based
matching method, which has shown good matching results.

b) Existing repair framework: Existing repair frame-
works can be divided into offline mode and online mode. In
the offline mode, such as WATER [7], information is collected
during the execution and repairs are made after the execution.
In online mode, such as VISTA [2], information is collected,
and repairs are made at the runtime. Compared with offline
mode, online mode can fix multiple breakages in a single
run. To support online repair, VISTA utilizes Java Parser and
regular expressions to parse the test cases into a list of ⟨locator,
action, parameters⟩.Then it executes each action according

old

new

Path
Similarity

Region
Similarity

Match Result

Dynamic Repair
P

ro
p

Si
m

ia
lr

it
y

Element Match
Test

Query

Iterative

Fig. 2: The workflow of UITESTFIX.

to the sequences of the list. When an element of the new
version is failed to be localized, VISTA automatically fixes
the locator and executes the broken action again. However,
due to complex test scenarios and free coding styles, VISTA
may not be able to parse test cases using regular expressions,
hence causing repair failures. For example, test cases written
by the page-object design pattern [9] are difficult to parse by
using regular expressions.

c) Definition of successful repair and successful match:
To test a certain functionality, developers usually use assertion
to determine if the execution result of the test case is correct.
Therefore, a correctly fixed test case should meet two criteria:
(1) the test execution can cover the original functionality,
and (2) the test case assertion passes. In terms of successful
element matching, due to element nesting, there may be
more than one element implementing a certain function on
a web page. Different algorithms’ strategies may produce
different and correct matching results, i.e., match one element
to different elements that represent the same function. As
these elements implement the same functionality, we consider
the matching results of the elements to be a many-to-many
relationship.

IV. METHODOLOGY

Figure 2 shows the overall workflow of UITESTFIX.
UITESTFIX contains several components: grouping, similarity
metrics, iterative matching and dynamic repair. When the ele-
ment cannot be found by the original locator causing a crash,
UITESTFIX takes the current web page and the corresponding
web page in the old version as input, and then obtains the patch
via grouping, calculating similarity and iterative matching.
After replacing the broken locator with the correct one, the test
can continue its execution where subsequently broken locators
are fixed until the end of execution.

A. Grouping

To automatically fix broken UI test cases, the first step is to
match the elements from old and new versions. However, if we
use the original DOM as input directly, the following problems
will arise: (1) the number of elements on web pages is
usually quite high, which increases the complexity of element
matching; (2) there are a lot of invisible elements, which
may also affect the matching accuracy of visible elements; (3)

1.<ytd-guide-entry-renderer class="..." active
="">

2.
3. <tp-yt-paper-item class="style-scope">
4. <yt-icon class="guide-icon">
5. <svg viewBox="0 0 24 24">
6. <g class="style-scope yt-icon">
7. <path d="M4,3Z"></path></g></svg>

</yt-icon>
8. <yt-formated-string>Home</yt-formated-

string>
9. <yt-img-shadow hidden=""></yt-img-shadow

>
10. <yt-icon class="guide-entry-badge"></yt-

icon>
11.
12. <div id="newness-dot"></div> </ytd

-...>

(a) A simplified HTML code of Youtube’s Home button

ytd-guide-entry-render

a

tp-yt-paper-item

yt-formatted-string yt-icon svg g path

yt-formatted-string

yt-img-shadow
yt-icon
span
div

In
va

lid

(b) A gourping process for the YouTube’s Home button.

Fig. 3: DOM Structure of YouTube’s Home Buttons in 2023.

unable to distinguish which elements represent regions and
which elements represent functionality (e.g., button).

For instance, Figure 3b shows the DOM structure of
YouTube’s home button in 2023 and its simplified HTML
code (Figure 3a). This simple button contains 12 elements
as labeled in Figure 3a. By deeply analyzing this HTML
code snippet and its DOM structure, we observed this button
is composed of three main components (1) button region
(elements 1–3), (2) button icon (elements 4–7), and (3) button
text (element 8). From the user’s viewpoint, elements 9–12 are
not visible, e.g., the size of element 10 is 0, and the test case
could not execute the event in these elements. However, the
invisible elements and duplicated elements cause the number
of elements on the HTML page to exceed the actual number
of visible components, which affects the matching results. To
solve this problem, we filter invisible and merge duplicated
elements into a group using the steps below:
1) Filter invisible elements: If an element has (1) width
or height less than 5 (too small to be visible) or (2)
isDisplayed=false.
2) Merge elements: If an element has only one visible child
element, the child element will be merged into its parent
element.
3) Merge properties: After merging, the parent element will
have all properties of the merged child element. If the parent
element has neither id nor text, it will use the id/text of the

child element.
After grouping, we rebuild a new tree using the remaining
elements. In Figure 3b, elements 1, 4, and 8 are eventually
saved, where elements 4 and 8 are saved as children of element
1.

B. Similarity Metrics

In this subsection, we define the similarity metrics used to
compute the similarity between the old and new elements.

Given two DOM trees To and Tn, representing the old and
new versions of web pages, we denote the element list of To as
Eo={e1o, e2o, . . . }, and element list of Tn as En = {e1n, e2n, . . . }.
The attribute of a node e is denoted as e.id, e.class, e.text,
etc. If eio and ejn is determined as match, eio 7→ ejn will be
saved to matching list M.

1) Id similarity. The most straightforward similarity metric is
the exact matching of n.id. Since the id attribute of elements
is usually unique in web pages, we define elements eio and ejn
match if (1) eio.id is exactly the same as ejn.id, and (2) eio.id
is a unique id among Eo, and ejn.id is a unique id among En.

Besides id similarity, we also used two existing similarity
metrics:
2) Property similarity (Sprop). TF-IDF (Term Fre-
quency–Inverse Document Frequency) is a widely used text
similarity metric [10]. As some words in properties appear
in many elements, these repeated words will not be able
to distinguish elements (e.g., div). Therefore, TF-IDF can
effectively use words with important meanings to calculate
similarity. Compared to SFTM [8], which uses IDF, we use
TF-IDF to incorporate the term frequency (TF). Using TF to
normalize the final similarity helps to combine the property
similarity with other similarities, and avoiding that the prop-
erty similarity being large enough to cover other similarities.
Moreover, SFTM [8] considers XPath, tag, and attribute as
properties. According to our observation, text is more stable
than XPath during page evolution. Hence, we use text, tag,
and attribute to calculate Sprop (i.e., we replace XPath with
text).
3) Text similarity (Stext). To calculate the similarity of text
properties, we use Levenshtein distance [11], which performs
well in existing tool WEBEVO [6] when texts have small
changes. If the texts of elements are empty, text similarity
will be left as 0. Otherwise, the text similarity is calculated as
follows:

Stext(e
i
o, e

j
n) = edit distance(eio.text, e

j
n.text)

Apart from the above three metrics, we propose two new
metrics: region similarity and path similarity. These two
metrics allow us to better utilize structural information for
matching elements.
4) Path similarity. Based on the first idea I1, if two elements
exist in the same region, they should have a higher similarity.

All ancestor nodes of n form a path from the root node
to n. Given two nodes ni

o and nj
n, the closer the common

ancestor in the path they have, the higher similarity they share.

This is because a closer common ancestor indicates they are
located in the same smaller region. The common ancestor
of the two elements is determined according to the current
matching results stored in M. Note that the path similarity
changes along with the change of M in the iteration phases,
which will be explained in Section IV-C.

Formally, given two elements eio and ejn, their path similarity
Sp is defined as the length from the root node element to
the deepest matching element, normalized with the total path
length. Formally,

Sp(e
i
o, e

j
n,M) = min(

path(Md(e
i
o))

path(eio)− 1
,
path(Md(e

j
n))

path(ejn)− 1
)

where path(e) is the length of the path from the root node
element to e, and Md(e

i
o) 7→ Md(e

j
n) ∈ M is the deepest

matched element in the paths of eio and ejn, respectively.

5) Region similarity. For non-leaf node elements, we can use
the second idea I2 to improve its correct matching rate. The
non-leaf node element can be considered as a region, and the
similarity of two regions can be measured by the similarity
of elements located in those two regions. Hence, we propose
region similarity Sr, which calculates the similarity of regions
(non-leaf node elements) using the matching result of leaf node
elements in two regions, normalized by the total number of
leaf node elements. Given two non-leaf node elements eio and
ejn, their region similarity is defined as:

Sr(e
i
o, e

j
n,M)=

|{(e1, e2)|e1∈C(eio)∧e2∈C(ejn)∧e1 7→e2∈M}|
max(|C(eio)|, |C(ejn)|)

where C(e) is the list of child leaf nodes of e. Similar to the
path similarity, the region similarity also changes along with
the change of M in the iteration phases.

C. Iterative Matching

Based on similarity metrics, we then present our iterative
approach for optimizing the matching results. Algorithm 1
shows our iterative matching algorithm. The algorithm takes as
inputs the element lists of the old and new version web pages
and outputs the matching result. Firstly, our tool initializes the
similarity for each pair of elements according to id, attribute
and text similarity (lines 3-12). Specifically, if the ids of two
nodes are exactly the same, we are confident of adding them
to sure matching list M, which will not be modified in the
later stage. Otherwise, their initial similarity will be calculated
based on attribute and text similarity (line 10).

The iterative matching algorithm mainly updates the sim-
ilarity, and then updates the matching results iteractively.
In t iterations (lines 13-31), the similarity of each pair is
continuously updated according to path similarity at line 18.
For non-leaf node elements, their similarity is also updated
using region similarity (lines 19-21). As mentioned before,
path and region similarity values are determined by current
matching results (i.e., Mw). In each iteration, after updating
the similarities, all candidate matching pairs whose similarity
is greater or equal to the threshold θ are selected and saved in

Algorithm 1: Iterative matching.
Input: Eo, En: element lists of old and new web page

t: maximum number of iterations.
Output: M: the matching results

1 M={ };
2 InitialS=EmptyMap;
/* initial similarity. */

3 for e1 in Eo do
4 for e2 in En do
5 if e1.id == e2.id then
6 M =M∪ {e1 7→ e2};
7 Eo = Eo − e1; En = En − e2;
8 break
9 end

10 InitialS[(e1, e2)] = α∗Sprop (e1, e2)+ Stext (e1, e2);
11 end
12 end
13 Mw=M;

/* iterative match. */
14 for i = 1 to t do
15 S=EmptyMatrix;

/* Update similarity. */
16 for e1 in Eo do
17 for e2 in En do
18 S[(e1, e2)] = InitialS[(e1, e2)]+β∗Sp(e1, e2,Mw);
19 if IsNonLeaf (e1) ∧ IsNonLeaf (e2) then
20 S[(e1, e2)] += γ ∗ Sr(e1, e2,Mw);
21 end
22 end
23 end
24 Mw =M;

/* Update match result. */
25 E ← {(ei, ej , S[(ei, ej)]) | S[(ei, ej)] ≥ θ};
26 for e ∈ E do
27 {ex 7→ ey} = getMatchedPair(e);
28 Mw = {ex 7→ ey} ∪Mw;
29 end
30 end
31 return Mw;

E at line 25. We choose to only consider one-to-one matching
and use a greedy method to match them. In each iteration,
we select the matching pair {ex 7→ ey} with the highest
similarity from E at line 25 and add it to the matching result
M at line 28. At the end of the loop, the matching results
for this iteration are generated. The iteration terminates when
the number of iterations reaches limit t or when the matching
results will no longer change.

Note that the initial outputs of the matching algorithm are
matching between element groups (refer to Section IV-A).
To get the real element matching, the concrete elements are
selected from the group according to the following rules: (1)
if there is an element in the group with the same tag as the old
version element, then that element is selected, (2) otherwise,
the outermost element is selected.

D. Dynamic repair

Based on the generated matching results between the old
and new versions, UITESTFIX then produces patches for fix-
ing the broken UI tests. Specifically, for each test, UITESTFIX
only works when UI actions are triggered. For each UI action
performed on element eo that fails to be executed, UITESTFIX
will search for the matched element en by querying the
matching result. If UITESTFIX finds eo’s matched element en,

it will then executes the action on en. Otherwise, UITESTFIX
terminates the test execution because the element may have
been deleted or not exist on this page anymore. The repaired
test cases are then validated by executing it again on the new
version of the web page. Finally, UITESTFIX produces the
repaired test cases.

V. IMPLEMENTATION

To handle complex industrial apps and dynamically repair
test cases, we implement UITESTFIX, which mainly consists
of three modules: instrumentation, element matching, and
repair.

Instrumentation. The instrumentation module utilizes
aspect-oriented programming (AOP) [12] instrumentation,
adapted from VISTA [2], to instrument Selenium tests. The
AOP instrumentation dynamically instruments the invocations
of WebDriver.findElement, WebElement.findElement, WebEle-
ment.click, and other similar methods used for element locat-
ing and performing actions on elements. The inserted code
records the trace of actions and corresponding UI status
before/after each action, allowing for a detailed analysis of
the actions performed.

Executed in the old version. After instrumenting the tests,
UITESTFIX would execute the tests on the instrumented
program to record its action traces. When a test is executed
on the old version, for an action a, our instrumentation records
the action id represented by ⟨l,m⟩, where l is the line number
where action a is triggered (e.g., the line number of ele-
ment.click()), and m represents the method name that triggers
a. Meanwhile, before triggering a, our instrumentation also
records the web page state s, a tree with element information
(visibility, size, attributes, text, tag and XPath). Specifically,
after executing a test with n actions on the old version,
UITESTFIX generates a set of action traces in the form of
{(⟨l1,m1⟩, s1), . . . , (⟨ln,mn⟩, sn)}.

Executed in the new version. Using the recorded action
traces, the repair module fixes broken actions as follows:
1) Check if the action needs to be fixed. Executes the test

action and uses try-catch to catch NoSuchElementException
or InvalidElementStateException, which are two exceptions
related to the element exception. If no exception is caught
(i.e., normal test execution), the subsequent repair steps
will not be performed. Otherwise, UITESTFIX uses the
following steps to fix the broken events.

2) Find the execution information of the event to be fixed in
the old version. When an exception is caught, the repair
module first collects the line number and the method’s
name that triggers the broken action an. Then, it queries
the action traces to determine the matched action ao of the
old version and the state so. Meanwhile, it also saves the
new version’s web page state sn when encountering the
broken action.

3) Match element. Use the approach presented in Section IV
to match so and sn.

4) Repair the action online. UITESTFIX further executes
the crashed action on the matched element to achieve the

original purpose of crashed action. After the repaired action
is executed, UITESTFIX saves the repair information as the
generated patch.

After completing the execution of the test case, UITESTFIX
will output a patched test case.

VI. EVALUATION

We evaluate the effectiveness of UITESTFIX in web UI tests
repair and answer the following research questions:
RQ1: How effective is UITESTFIX in UI element matching
compared with existing methods?
RQ2: How efficient are different matching methods?
RQ3: How effective is UITESTFIX in test case repair com-
pared with existing methods?
Selected baselines: We compared UITESTFIX with four base-
lines, including two repair tools (WATER [7], VISTA [2]),
and two UI element matching algorithms (WEBEVO [6], and
SFTM [8]). We exclude the model-based tool [4] because
the code in the GitHub repository fails to compile due to
missing dependencies. WATER is a UI test repair tool that
uses the similarity of DOM properties of elements for match-
ing. VISTA is a repair tool that uses image processing and
computer vision techniques by comparing visual information
in two versions of the apps. WEBEVO computes both text
similarity and image similarity of the elements in two versions
of the apps to match elements. The recently proposed algo-
rithm, SFTM, assigns attribute scores to all potential matches
between nodes in two versions and adjusts the scores using
the parent-child relationships of nodes. Similar to VISTA [2],
UITESTFIX performs online repair, which fixes broken tests
during execution. On the other hand, WATER [7] uses an
offline mode, which collects information during test execution
and repairs after the execution. Therefore, we use the re-
implemented version in VISTA [2] to evaluate WATER. For
all other tools, we use their open-source implementations and
parameters. The parameters of UITESTFIX in Algorithm 1
include: maximum iterations t=5, attribute similarity weight
α=0.7, path similarity weight β=1.0, region similarity weight
γ=2 and similarity threshold θ=1.2. All these parameters are
tuned via grid searches for the best values.
UI Match Dataset: To evaluate the performance of different
UI element matching algorithms, we use an extended WE-
BEVO dataset [6] (EWD). The WEBEVO dataset includes
13 web applications in total. We excluded the web pages
ClassDojo and Home Depot because they could not be loaded
correctly. To expand our dataset, we select the Top 15 web
apps on Semrush [13] (which presents a ranked list of most
visited websites) and remove web pages that overlap with
the WEBEVO dataset [6]. We use Wayback Machine [14] to
obtain the historical web pages. In total, our expanded dataset
contains 44 web pages of 22 web apps (with 11 apps from
WEBEVO and 11 extended apps).

Moreover, to show the ability of different element matching
algorithms on large-scale industrial applications, we also in-
clude two industrial apps. To maintain anonymity, we omit the
application and company name in the paper review process.

TABLE I: Statistics of our UI match dataset

Dataset Add Delete Update Total
EWD 301 218 1,101 1,620
IND 170 101 631 902
Total 471 319 1,732 2,522

We select two apps FabricInsight and CampusInsight, two
big data analysis platforms, which are two core products of
HUAWEI. To ensure sufficient changes are collected for our
study of web UI elements evolution, we select web pages
which contain sufficient changes. Specifically, we select web
pages with more than 20 changed elements. In the end, we
collected 13 web pages from two industrial apps. The types
of selected web pages are diverse, which include home pages,
pages for configuring system settings, data pages, and pages
with charts.

Similar to prior work [6], we also consider three types of
element changes: Update, Add, and Delete. Table I shows the
statistics of our UI element matching dataset. In the UI element
matching dataset, we try to label all the elements on the
pages as much as possible. The labeling process does not only
label the change types, but also annotate the matching pairs
between the old and new versions, which are then served as the
ground truth of element matching. However, some elements,
such as content elements, are difficult to label. As a result, we
made the decision to exclude them from the labeling process.
Since VISTA only supports matching the innermost elements,
to make a fair comparison of the performance of different
algorithms, we only consider leaf nodes in our experiment.
Totally, we labelled 2,522 changed elements.
UI Test Dataset: Since the WEBEVO dataset does not have
open-source test cases, we choose to evaluate the effectiveness
of UITESTFIX using open-source and industrial test datasets.
For the open-source tests, we use an existing test dataset [4].
Specifically, we include all web apps in prior work [4], except
for the Password Manager app because the provided link
for this app is no longer available for download. For the orig-
inal test case dataset, we mainly made two modifications, (1)
remove test cases without assertion statements or repeated test
cases, as the assertions are used as the correctness specification
for UITESTFIX, and (2) insert necessary UI actions (e.g.,
login) so that test cases can be executed independently. To
avoid the problem caused by missing data (such as username
does not exist or password is incorrect), we first insert some
SQL statements to prepare the data for test execution (e.g.,
create user and save username/password information into the
database). The selected two industrial apps FabricInsight and
CampusInsight have 5,839 test cases in total. Conducting
experiment on all the tests is too time-consuming, since
executing these tests in parallel will take two or three days
in industrial environment. Hence, we randomly select 250
test cases (the number is aligned with the existing work [4])
to execute. We select the test cases that must be repaired,
regardless of the number of pages used by these tests. We

TABLE II: The original and modified versions of the selected
web pages

Label Application Original Version Modified Version
I AddressBook 4.0 6.1
II Claroline 1.10.7 1.11.5
III Collabtive 0.65 1.0
IV MantisBT 1.1.8 1.2.0
V MRBS 1.2.6.1 1.4.9

then exclude 46 tests as they require configuring a specific
test environment. Table II shows the original and the modified
versions of the selected web pages. The open-source dataset,
following settings from the provided GitHub repository in
the prior work [4], involves changes across multiple versions.
Note that fixing tests across multi-version changes may not
be realistic. Hence, we use single-version changes for the
industrial dataset, which is practical in an actual industrial
environment.

During the classification of the matching results (RQ1)
and the generated fixes (RQ3), two authors of the paper
independently analyzed them by inspecting the matched UI
elements to check if the matching was correct and if it led
to any newly thrown exception. Then, they met and discussed
resolving any disagreements.

All experiments for the open-source apps are run on a
computer with an Intel Core i5 processor (2.3GHz) and 24
GB RAM, whereas the experiments for the industrial apps
are conducted on a computer with an Intel Core processor
(3.20GHz) and 32GB RAM.

A. [RQ1] Effectiveness on Matching Elements

Table III summarizes the evaluation results on web element
matching. For each algorithm, the table lists the correct num-
ber and accuracy of different types of changes in the extended
WebEvo dataset (EWD) and industrial dataset (IND) . The
“Total” row summarizes the total number of corrects and the
overall accuracy of different algorithms. Overall, UITESTFIX
achieves the best result on all types of changes (Add, Delete
and Update) for both open-source and industrial datasets.

More specifically, UITESTFIX is more accurate than all
other evaluated tools, with the overall success matching rate
being 84.9%, while the best result of existing tools is only
68.8%. UITESTFIX produces better results than existing tools
mainly because our optimization approaches iteratively im-
prove the matching results based on region and path similarity,
while other tools produce matching results directly. It is
worth noting that tree-based matching algorithms (SFTM,
UITESTFIX) have significantly higher accuracy in identifying
added and deleted elements than other matching algorithms.
For instance, among 170 added elements from the industrial
dataset, SFTM successfully matches 133 of them with 78.2%
accuracy, while the accuracy of WATER, VISTA, and WE-
BEVO is 16.5%, 4.7%, and 5.9%, respectively. UITESTFIX
even achieves better results, and its accuracy is 83.5%. This is
because the tree-based matching algorithm matches elements

by referring to parent-child relations, which has a stronger
ability to identify added and deleted elements. In terms of
deleted elements, UITESTFIX outperforms SFTM (76.2% vs
31.7%) mainly because UITESTFIX can also consider the
relations of sibling nodes in the iterative, while SFTM only
measure the parent-child relations.

0 1 2 3 4 5 6 7 8 9
Number of iterations

0

500

1000

1500

2000

2500

C
or

re
ct

ly
 m

at
ch

ed
 e

le
m

en
ts

Fig. 4: The accuracy rate varies with the number of iterations.

We further evaluate the effectiveness of the iterative al-
gorithm. Figure 4 presents the number of correctly matched
elements during the iterative process. The x-axis shows the
number of iterations, while the y-axis displays the count
of correctly matched elements. It is evident from the graph
that the matching accuracy increases progressively with each
iteration. In the first iteration, only 908 elements were correctly
matched, while the following three iterations successfully
matched 1986, 1988, and 2157 elements. However, after the
fourth iteration, there is no significant improvement in the
matching accuracy. Therefore, we decided to set the maximum
iterations to five. The results indicate that the iterative process
significantly enhances the matching accuracy.

B. [RQ2] Efficiency on Matching Elements

To compare the efficiency of different algorithms, we calcu-
late the average time taken by each algorithm to generate final
matching results. We use the saved web page for matching to
avoid inaccuracy caused by the network (e.g., page loading
latency).

The “AVG Time” row in Table III shows the average
time taken (in seconds) by different algorithms to generate
matching results across all web pages. Among all evaluated
tools, WATER is the fastest in producing matching results
(0.0003s) because it matches elements by computing similar-
ities of DOM properties which is very efficient. WEBEVO
and VISTA are slower than WATER since they rely on time-
consuming image similarities check. WEBEVO is much faster
than VISTA since it uses a fast image similarity algorithm
(aHash). UITESTFIX and SFTM take similar time to generate
matching results (0.97s and 0.87s). Compared to WATER and
WEBEVO, UITESTFIX is slower mainly because it requires
multiple iterations for optimizing the matching results. With
improved accuracy, we believe it is acceptable to take <1s to
generate matching results for each web page.

TABLE III: Accuracy of UI element matching for all evaluated approaches

Modified WATER VISTA WEBEVO SFTM UITESTFIX
Type EWD IND EWD IND EWD IND EWD IND EWD IND
Add 4 (1.3%) 28 (16.47%) 30 (10.0%) 8 (4.7%) 87 (28.9%) 1 (5.9%) 162 (53.8%) 133 (78.2%) 170 (56.5%) 142 (83.5%)
Delete 11 (5.0%) 1(1.0%) 49 (22.5%) 5 (5.0%) 44 (20.2%) 0 (0%) 100(45.9%) 32 (31.7%) 111 (50.9%) 77 (76.2%)
Update 500(45.4%) 344(54.52%) 651(59.1%) 434(68.78%) 803(72.9%) 278(44.1%) 808(73.4%) 500(79.2%) 1036(94.1%) 605(95.88%)

Total 515(31.8%) 373(41.35%) 730(45.1%) 447(49.6%) 934(57.7%) 279(30.93%) 1070(66.1%) 665(73.3%) 1317(81.3%) 824(91.4%)
888 (35.2%) 1177 (46.7%) 1213(48.1%) 1735 (68.8%) 2141 (84.9%)

AVG Time 0.0003s 7.7623s 0.0799s 0.9726s 0.8685s

TABLE IV: UI test repair effectiveness

Application Total ∆V WATER* VISTA* WEBEVO* SFTM* UITESTFIX

AddressBook 8 30 1 2 0 2 2
Claroline 29 7 0 24 0 0 24
Collabtive 5 4 3 1 2 0 3
MantisBt 38 1 18 4 19 6 24
MRBS 24 12 0 4 0 2 4
FabricInsight 46 1 36 33 37 40 43
CampusInsight 16 1 6 5 6 11 13
Total 166 - 64(39%) 73(44%) 64(39%) 61(37%) 113(68%)

C. [RQ3] Effectiveness on Repairing UI Tests

To fairly compare the capabilities of different algorithms
in repairing broken UI tests, we integrated the matching
algorithm of WATER, VISTA, WEBEVO and SFTM into
our repair framework. We named them WATER*, VISTA*,
WEBEVO* and SFTM*, respectively.
Successful repair. We consider a test case to be successfully
fixed if (1) the test passes after the repair and (2) each action
in the test has been correctly executed (we verify this by
manually comparing the screenshots of the traversed web
pages).

The dataset contains 135 test cases in open-source apps and
204 test cases in industrial apps. After excluding 163 non-
crashing test cases (which do not need to be repaired) and 10
test cases that cannot be repaired due to the tested modules
being removed, we obtained 62 crashing test cases in open-
source apps and 104 crashing test cases in industrial apps (166
test cases in total).

Table IV presents the test case repair results of different
algorithms. For each application, the table reports the total
number of test cases (Total) and the number of test cases
successfully repaired by different algorithms. Column ∆V
shows the number of released versions between the original
and new versions. As shown in Table IV, UITESTFIX achieves
the best results across all applications. In total, UITESTFIX
successfully fixes 113 broken test cases with a repair rate of
68%, while the best existing tool (i.e. VISTA*) only fixes
73 of them with a repair rate of 44%. Moreover, we observe
that the larger ∆V is, the more changes introduced to the new
versions since the original version, the more challenging to fix
the broken tests. For instance, for MRBS, the best tool only
fix 4 of 24 broken test cases.

The number of successful repairs generated by the same
approach differs across apps. WATER and WEBEVO per-
formed well on MantisBt but did not repair any test cases
on Claroline. SFTM performed well on both FabricInsight

and CampusInsight but did not work well for the five open-
source applications. This is mainly due to the different element
change types of different applications. For instance, on the
login web page of MantisBt, the button with the text “Enter”
is transformed into the input with the value attribute “Enter”.
VISTA is weak at distinguishing the elements with text,
leading to the “Enter” button matched with the “Log out”
button, resulting in test cases that cannot be repaired. Even
so, the repair rate of UITESTFIX on different applications is
the same or higher than all existing algorithms, which shows
the high robustness of UITESTFIX.

6 00

0
0

0

1

0

27

0

1

0
00

0
1

6
01

0

6 01

0

0

0

1

0

3

0

3

WATER*

VISTA*

WEBEVO*

SFTM*UITESTFIX

(a) Open-source test cases

2 06

0
1

0

2

0

0

0

0

0
00

3
0

1
03

0

0 03

0

0

0

1

0

1

0

33

WATER*

VISTA*

WEBEVO*

SFTM*UITESTFIX

(b) Industry test csaes

Fig. 5: Distribution of test cases repaired by different algo-
rithms.

Figure 5 shows a Venn diagram of repaired test cases of
WATER*, VISTA*, WEBEVO*, SFTM* and UITESTFIX in
the open-source and the industrial test dataset. The green, blue,
pink, yellow, and orange represent the number of test cases
repaired by WATER*, VISTA*, WEBEVO*, SFTM* and
UITESTFIX, respectively. There are 8 test cases in the open-
source dataset that can only be fixed by UITESTFIX, while
there are 2 test cases in the industrial dataset that can only
be fixed by UITESTFIX. On the other hand, there is only one
test case from the open-source dataset that cannot be fixed by
UITESTFIX but fixed by other tools (WATER). The test case,
that UITESTFIX failed to fix, needs to click a series of actions
and then click an “add task” button. After the web page update,
UITESTFIX failed to match the “add task” button because
this button was removed from the original page. In contrast,
WATER matches this button with an “add task” button from
a different page. These two buttons are matched by WATER
just because they simply have the same text. Since the matched
“add task” button also completes the function of adding tasks
and passes the assertion checking, this test is considered to
be repaired successfully by WATER. This situation happens

Delete Action
3.77%

Propagated Breakages
32.08%

Incorrect Match
13.21%

Add Action
35.85%

Modify Assert
7.55%

Branch Statement
7.55%

Fig. 6: Reasons behind the repair failures of UITESTFIX.

relatively rarely (only once in the experiment). We also noticed
that some test cases could only be correctly fixed by a specific
algorithm other than UITESTFIX. For example, in the open-
source test cases, there are 27 test cases that can only be fixed
by VISTA and UITESTFIX, while in the industrial dataset,
there are 6 test cases that can only be fixed by SFTM and
UITESTFIX. This means that although different algorithms
have their own advantages, UITESTFIX has a stronger ability
to fix test cases.

To better understand the capability of UITESTFIX for future
improvement, we manually analyze the 53 broken test cases
which UITESTFIX fails to repair. Specifically, for each case,
we categorize the reason behind the test failure by comparing
the correct repair with the algorithm’s repair results. Figure 6
shows the distribution of the six reasons behind the failure of
UITESTFIX.

1) Add Action. Add Action denotes that an action needs to
be added to repair the test.

2) Delete Action. Delete Action denotes that an action needs
to be deleted to repair the test.

3) Modify Assert. Modify Assert means that the expected
value of the assertion needs to be updated in the test.

4) Branch Statement. Some test cases use some branch
statements to enhance the stability of test cases, such as
using if-else statements to handle the empty table data and
the case of the table data not being empty. The branch
statements executed in the new version may not have been
executed in the old version, causing the inability to repair
the test case in the new version due to the lack of action
information. We label this reason of failure as Branch
Statement.

5) Propagated Breakages [15]. Propagated Breakages refer
to the scenario where the element is pointing to an incor-
rect element using the original locator without throwing
an immediate exception but triggers a subsequent crash.

6) Incorrect Match. The test case can be fixed by relocation,
but the algorithm matches incorrectly or cannot find the
matched element.

As only 7 of them are caused by Incorrect Match (13.21%),
and UITESTFIX can repair 113 (94.16%) test cases requiring
locator fixes, and this shows that UITESTFIX performs well in
repairing broken locators. This indicates that for the relocation
type of repairs, UITESTFIX already has a strong capability.
Therefore, in the future, we will focus on the remaining types
of repair failures.

VII. DISCUSSION

Open dataset for web UI maintenance. Although many
techniques have been proposed for UI element matching
and repairing broken UI tests in the past decade, we notice
that there is still a lack of labelled web UI open dataset.
Having a community-driven dataset is an important direction
to encourage future research in studying and automating the
repair of broken web UI tests. Although we could not share
our industrial dataset due to the policy in HUAWEI, we have
manually labelled the UI web page dataset (the expanded
WebEvo [6] dataset), and released it as an open dataset as
an initiative towards this direction.
Types of repairs in broken UI test cases. As most prior
techniques focus on fixing broken locators, this further mo-
tivates us to improve over existing techniques by designing
UITESTFIX, a more accurate technique for fixing broken
locators in web UI tests. Although as shown in Figure 6,
there are still 120 out of 166 test cases can be fixed
through relocation, of which UITESTFIX currently cannot fix
7. However, the remaining 46 test cases involving actions
such as addition, deletion, propagation of crashes, and branch
statements are worth further investigation. It is worthwhile to
design techniques that specialize in repairing broken UI events
in the future.
Importance of DOM structure information. Prior techniques
in matching UI elements usually use (1) attribute information
(e.g., WATER [7]), (2) visual information (i.e., VISTA [2]),
and (3) structure information (i.e., SFTM [8]). Our evaluation
shows that approaches that use structural information for
repairing broken locators are more accurate than those that do
not. This indicates the importance of structural information in
improving the accuracy of matching UI elements. Although
our approach uses textual information (e.g., id) for matching
UI elements, relying merely on textual information leads to
inaccurate results as textual information is often subject to
changes. Compared to using structural information, our results
show that VISTA that relies on visual information takes the
longest time due to the overhead in matching elements via
image processing and computer vision. Meanwhile, matching
using visual information also relies heavily on the accuracy
of image processing and computer vision, which is less
mature than textual matching used in structural and textural
information. For example, in Figure 1a, although the general
structures of the old and new MRBS pages are similar, VISTA
fails to match correctly due to visual changes.
Iterative matching. The key idea behind UITESTFIX is an
iterative approach that performs multiple rounds of matching
to increase the similarities of weakly matched elements. As
our experiment shows that our matching algorithm leads
to improved matching accuracy, and the algorithm can be
theoretically applied for any task that requires matching of
UI elements, in the future, it is worthwhile to study using
an iterative matching approach for tasks beyond the repair of
broken tests (i.e., compatibility testing [16]).
Threats to Validity. Internal threats arise primarily from

potential errors in labeling and variations in element change
definitions. To address this concern, two authors indepen-
dently checked and confirmed the accuracy of the annota-
tions, ensuring a higher level of reliability. External threats
originate from two main sources. Firstly, the flakiness of test
cases can lead to unstable repair results. To minimize the
impact of flakiness on the algorithm’s repairs, we closely
monitor the execution process by capturing screenshots of
the executed elements. If any issues arise due to external
factors, such as network instability, we reprocess the repair
procedure accordingly. Another concern is the generalization
of experimental results. We conducted evaluations on limited
web pages and test cases. However, our datasets consist of
both open-source and industrial applications. We extensively
tested changed elements across various types of famous pages.
These measures contribute to the reliability and credibility of
our experimental findings.

VIII. RELATED WORK

Studies on web UI test maintenance. Several studies investi-
gated the characteristics of UI test maintenance for industrial
web apps [17], [9], [18]. Prior studies of an industrial app
(i.e., the Learning Content Management System) revealed
that ID-based tests required less maintenance effort than the
XPath-based ones [17], and recommended using page object
pattern for improving test maintenance [9]. Meanwhile, IBM
researchers described their experience of using ATA, an ap-
proach based on natural-language processing and backtracking
exploration to automatically convert manual test steps in one
enterprise web app to test cases for improving test automa-
tion [18]. We have analyzed the reasons why the UITESTFIX
cannot repair some test cases, and these reasons will guide
future improvements in automated program repair.
Automatic UI Test Case Repair. In recent years, automated
program repair [19], [20], [21], [22], [23], [24], [25] has been
widely explored to fix many kinds of bugs. Meanwhile, to help
testers fix broken UI test cases, many techniques have been
proposed [7], [1], [26], [27], [28], [2], [29], [4], [3], [30],
[31], [5], [32]. Most existing approaches fix broken tests by
replacing outdated locators [7], [2], [29], [3], [30], [31]. The
number of successful repairs usually depends on the correct
matching rate and can only fix crashes caused by locator
changes. Several model-based approaches are proposed for
fixing broken UI tests for Java apps [33], [34], web apps [5],
[4], and Android apps [28], [26], [27]. To repair crashes
in broken tests, these approaches usually rely on building a
model (e.g., Event Flow Graph) and then picking a new path
from the model to replace. However, it is not easy to obtain
accurate app models in real-world situations. Our experiment
did not compare with any model-based approaches as they
either fail to run [4] or are not publicly available [5]. Instead
of fixing broken locators, a multi-locator was proposed to
strengthen test cases by selecting the best locator to use [35].
Our technique is inspired by the newly proposed SFTM [8]
matching algorithm, and our repair framework is adapted from
the framework in VISTA [2]. Compared to these approaches,

our approach improves the accuracy of matching UI elements,
leading to more correct repairs.
Matching UI elements. UI element matching are used for au-
tomated maintenance of test cases [29], [6], [7], [2], automated
compatibility testing [16], and test reuse [36]. WATER [7]
relies on attribute information for matching . Meanwhile, more
recent approach approaches [16], [32], [6], [31], [29] use
a combination of attributes and visual information to match
elements. VISTA [2] is a representative tool that focuses on
matching elements using visual information, whereas Yoon
et al. leverage word and layout embedding for matching
elements [30]. Our iterative matching algorithm is most closely
related to the SFTM algorithm [8], which utilizes structural
information and attributes for matching. Nevertheless, our
experiments show that UITESTFIX outperforms all existing
tools in matching accuracy.

IX. CONCLUSIONS

In recent years, the automatic repair of web UI test cases
has gained widespread attention. However, existing methods
do not fully utilize structural information, resulting in lower
accuracy when matching elements with significant changes.
In this paper, we proposed UITESTFIX, an approach based
on a novel iterative matching algorithm for fixing broken UI
tests. UITESTFIX can use the existing matching results to
update the similarity and adjust it during the iteration process.
Therefore, it can use high-similarity elements to help match
low-similarity elements. Our evaluation of publicly available
and industrial datasets shows that UITESTFIX outperforms
four prior approaches in producing more accurate matching
and correct repairs. We analyzed the test cases in which
UITESTFIX failed to repair, and the results showed that
UITESTFIX could repair 94.16% of the test cases that only
require relocation.

X. DATASET

Since this is a project of business company, because of the
copyright issues, we are not allowed to open source the code
for UITESTFIX. To make our results to be replicated, our
dataset and experimental data are available at
https://anonymous.4open.science/r/Web-UI-Dataset-9645.

XI. ACKNOWLEDGEMENTS

We greatly appreciate the suggestions and effort provided by
my MS thesis advisor, Shin Hwei Tan. Additionally, Zhuolin
Xu’s assistance in conducting certain experiments was invalu-
able. This work partly supported by Huawei (GUI Automation
Testing Technology Collaboration Project - Automated Repair
of Test Cases for adapting to UI changes), and the National
Natural Science Foundation of China (Grant No. 62202026,
62141209).

REFERENCES

[1] M. Hammoudi, G. Rothermel, and A. Stocco, “Waterfall: An
incremental approach for repairing record-replay tests of web
applications,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering.
New York, NY, USA: ACM, 2016, p. 751–762. [Online]. Available:
https://doi.org/10.1145/2950290.2950294

https://anonymous.4open.science/r/Web-UI-Dataset-9645
https://doi.org/10.1145/2950290.2950294

[2] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web test repair,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 503–514.

[3] S. Brisset, R. Rouvoy, L. Seinturier, and R. Pawlak, “Erratum: Leverag-
ing flexible tree matching to repair broken locators in web automation
scripts,” Information and Software Technology, vol. 144, p. 106754,
2022.

[4] J. Imtiaz, M. Z. Iqbal et al., “An automated model-based approach to
repair test suites of evolving web applications,” Journal of Systems and
Software, vol. 171, p. 110841, 2021.

[5] W. Chen, H. Cao, and X. Blanc, “An improving approach for dom-
based web test suite repair,” in Web Engineering. Springer International
Publishing, 2021, pp. 372–387.

[6] F. Shao, R. Xu, W. Haque, J. Xu, Y. Zhang, W. Yang, Y. Ye, and
X. Xiao, “Webevo: taming web application evolution via detecting
semantic structure changes,” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021, pp.
16–28.

[7] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “Water: Web appli-
cation test repair,” in Proceedings of the First International Workshop
on End-to-End Test Script Engineering, 2011, pp. 24–29.

[8] S. Brisset, R. Rouvoy, L. Seinturier, and R. Pawlak, “Sftm: Fast matching
of web pages using similarity-based flexible tree matching,” Information
Systems, vol. 112, p. 102126, 2023.

[9] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro, “Improving test
suites maintainability with the page object pattern: An industrial case
study,” in 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops. IEEE, 2013, pp. 108–113.

[10] K. Sparck Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of Documentation, vol. 28, no. 1, pp.
11–21, 1972.

[11] E. Ristad and P. Yianilos, “Learning string-edit distance,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 20, no. 5,
pp. 522–532, 1998.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” in 11th European
Conference Object-Oriented Programming (ECOOP’97). Springer,
1997, pp. 220–242.

[13] “Semrush,” https://www.semrush.com/blog/most-visited-websites/,
2008, accessed: 2022-12-16.

[14] “Wayback machine,” https://archive.org/web/, 2014, accessed: 2022-12-
20.

[15] M. Hammoudi, G. Rothermel, and P. Tonella, “Why do record/replay
tests of web applications break?” in 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST), 2016, pp. 180–
190.

[16] Y. Ren, Y. Gu, Z. Ma, H. Zhu, and F. Yin, “Cross-device difference
detector for mobile application gui compatibility testing,” in 2022
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2022, pp. 253–260.

[17] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro, “Repairing selenium
test cases: An industrial case study about web page element localization,”
in 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation. IEEE, 2013, pp. 487–488.

[18] S. Thummalapenta, P. Devaki, S. Sinha, S. Chandra, S. Gnanasundaram,
D. D. Nagaraj, S. Kumar, and S. Kumar, “Efficient and change-resilient
test automation: An industrial case study,” in 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 1002–1011.

[19] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 772–
781.

[20] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A

generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, 2011.

[21] S. H. Tan and A. Roychoudhury, “relifix: Automated repair of software
regressions,” in 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, vol. 1. IEEE, 2015, pp. 471–482.

[22] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing crashes
in android apps,” in Proceedings of the 40th International Conference
on Software Engineering, 2018, pp. 187–198.

[23] X. Gao, S. Mechtaev, and A. Roychoudhury, “Crash-avoiding program
repair,” in Proceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, 2019, pp. 8–18.

[24] X. Gao, B. Wang, G. J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury,
“Beyond tests: Program vulnerability repair via crash constraint extrac-
tion,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 30, no. 2, pp. 1–27, 2021.

[25] S. Mechtaev, X. Gao, S. H. Tan, and A. Roychoudhury, “Test-
equivalence analysis for automatic patch generation,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 27, no. 4, pp.
1–37, 2018.

[26] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and X. Li,
“Atom: Automatic maintenance of gui test scripts for evolving mobile
applications,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2017, pp. 161–171.

[27] N. Chang, L. Wang, Y. Pei, S. K. Mondal, and X. Li, “Change-based
test script maintenance for android apps,” in 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE,
2018, pp. 215–225.

[28] Z. Gao, Z. Chen, Y. Zou, and A. M. Memon, “Sitar: Gui test script
repair,” IEEE Transactions on Software Engineering, vol. 42, no. 2, pp.
170–186, 2016.

[29] T. Xu, M. Pan, Y. Pei, G. Li, X. Zeng, T. Zhang, Y. Deng, and
X. Li, “Guider: Gui structure and vision co-guided test script repair for
android apps,” in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2021, pp. 191–
203.

[30] J. Yoon, S. Chung, K. Shin, J. Kim, S. Hong, and S. Yoo, “Repairing
fragile gui test cases using word and layout embedding,” in 2022 IEEE
Conference on Software Testing, Verification and Validation (ICST),
2022, pp. 291–301.

[31] M. Pan, T. Xu, Y. Pei, Z. Li, T. Zhang, and X. Li, “Gui-guided test script
repair for mobile apps,” IEEE Transactions on Software Engineering, pp.
1–1, 2020.

[32] H. Kirinuki, H. Tanno, and K. Natsukawa, “Color: correct locator recom-
mender for broken test scripts using various clues in web application,”
in 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2019, pp. 310–320.

[33] A. M. Memon, “Automatically repairing event sequence-based gui test
suites for regression testing,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), vol. 18, no. 2, pp. 1–36, 2008.

[34] S. Zhang, H. Lü, and M. D. Ernst, “Automatically repairing broken
workflows for evolving GUI applications,” in Proceedings of the 2013
International Symposium on Software Testing and Analysis (ISSTA),
Lugano, Switzerland, Jul. 2013, pp. 45–55.

[35] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Using multi-locators
to increase the robustness of web test cases,” in 2015 IEEE 8th In-
ternational Conference on Software Testing, Verification and Validation
(ICST), 2015, pp. 1–10.

[36] L. Mariani, A. Mohebbi, M. Pezzè, and V. Terragni, “Semantic
matching of gui events for test reuse: Are we there yet?” in
Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA). New York, NY, USA:
Association for Computing Machinery, 2021, p. 177–190. [Online].
Available: https://doi.org/10.1145/3460319.3464827

https://www.semrush.com/blog/most-visited-websites/
https://archive.org/web/
https://doi.org/10.1145/3460319.3464827

	Introduction
	Motivating Example
	Background
	Methodology
	Grouping
	Similarity Metrics
	Iterative Matching
	Dynamic repair

	Implementation
	Evaluation
	[RQ1] Effectiveness on Matching Elements
	[RQ2] Efficiency on Matching Elements
	[RQ3] Effectiveness on Repairing UI Tests

	Discussion
	Related Work
	Conclusions
	DataSet
	Acknowledgements
	References

