
Interactive Patch Generation and Suggestion
Xiang Gao

National University of Singapore, Singapore
gaoxiang@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore, Singapore

abhik@comp.nus.edu.sg

ABSTRACT
Automated program repair (APR) is an emerging technique that can
automatically generate patches for fixing bugs or vulnerabilities. To
ensure correctness, the auto-generated patches are usually sent to
developers for verification before applied in the program. To review
patches, developers must figure out the root cause of a bug and
understand the semantic impact of the patch, which is not straight-
forward and easy even for expert programmers. In this position
paper, we envision an interactive patch suggestion approach that
avoids such complex reasoning by instead enabling developers to
review patches with a few clicks. We first automatically translate
patch semantics into a set of what and how questions. Basically, the
what questions formulate the expected program behaviors, while
the how questions represent how to modify the program to real-
ize the expected behaviors. We could leverage the existing APR
technique to generate those questions and corresponding answers.
Then, to evaluate the correctness of patches, developers just need
to ask questions and click the corresponding answers.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
ACM Reference Format:
Xiang Gao and Abhik Roychoudhury. 2020. Interactive Patch Generation
and Suggestion. In IEEE/ACM 42nd International Conference on Software
EngineeringWorkshops (ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3387940.3392179

1 INTRODUCTION
Automated program repair (APR) can reduce the cost of bug fixing.
One of the most challenging problems in today’s automated pro-
gram repair research is theweak specifications. Themost commonly
studied test-driven APR take a test suite 𝑇 as program oracles, and
find a change to a buggy program 𝑃 to make it pass𝑇 . However, the
automatically generated patch may overfit the test data, meaning
that the patched program 𝑃 ′ passes 𝑇 but still fail on program in-
puts/tests outside of 𝑇 . The overfitting problem is one of the main
obstacles that prevent APR being deployed in practice.

Patch suggestion & Challenges To overcome the overfitting issues,
instead of directly applying the patches on programs, existing tech-
niques integrate the APR into the development environment [1, 5, 6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392179

When a bug is triggered, APR tools generate patch candidates,
which will be then sent to developers for verification. Ideally, the
APR can help developers save precious time by fixing bugs with a
single click. However, it is not always true since developers usually
have struggled with understanding the cause of the software be-
havior [4], and hence the semantic impact of a patch. This situation
becomes worse if APR suggests more than one patches (APR usually
generates a set of plausible patches) for developers.

Debugging reinvented To save the programming time spent on
debugging, Ko et al. [4] propose a new program understanding and
debugging approach, which translates the program behaviors into
a set of why did and why didn’t questions according to program
code and execution. Developers are then enabled to speculate about
program behavior by selecting questions about program output,
such as “why did variable color=red at line 15?”. Then, this tool
generates explanations for the output in question via program
analysis and visually provides the answers to developers. This
technique can help developers find the underlying cause of a bug
more easily. This is because developers usually define program
correctness in terms of outputs, and they are usually better at
reasoning about program outputs. On the same debugging task,
their evaluation shows that novice programmers with this tool are
twice as fast as expert programmers without it. These successes
inspire us to extend this idea to bug-fixing.

Proposed technique We envision a new approach to allow de-
velopers to review and apply patches via a few clicks, instead of
directly analyzing the root cause of a bug and the semantic impact
of auto-generated patches. To realize it, we propose an algorithm
with two steps: offline patch generation and online patch sugges-
tion. In the first step, given the test suite 𝑇 and buggy program 𝑃 ,
we generate a set of patch candidates using existing APR tools, like
Fix2Fit [3]. The semantics of patches are then translated into a set
of what and how questions and answers. As complementary to the
why question, the what question asks for the expected output to
fix a bug, such as “what should the value of variable color be at line
15 to pass the failing test?”. The answer to those what questions
are a set of Angelic values [2], the values that fix the failing test
while do not break the passing tests. The how questions formulate
how to change the program to realize the correct answer to the
what questions, such as “how to change the value of variable color
to blue at line 15?”. The answers to those how questions are the
auto-generated patches that can realize the expected behaviors.
In the second step, we provide the pre-generated questions and
answers to developers in an interactive way. The users just need
to ask questions and select corresponding answers to review the
patches. With our approach, users avoid evaluating the semantic
effects of a large number of plausible patches. Instead, they review
the correctness of much fewer patches in a more direct way. Mean-
while, the slow patch generation is conducted offline, which enables
real-time online interactions with developers.

https://doi.org/10.1145/3387940.3392179
https://doi.org/10.1145/3387940.3392179

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Xiang Gao and Abhik Roychoudhury

2 METHODOLOGY
The proposed approach could be applied in the continuous integra-
tion (CI) or the development process, e.g. IDE plugin. By regularly
building, testing, and deploying a program, CI provides the prereq-
uisites for APR tools that use test suites as correctness specifications.
Once a bug is detected, i.e. some tests fail, we will generate a set
of plausible patches in a form of questions and answers which are
then sent to developers via an interactive GUI. Ideally, developers
can figure out the correct patches with a few clicks. Overall, the
proposed approach consists of the following four main steps.

Offline PatchGenerationGiven a detected bug and a test suite,
we first use existing APR tools to generate a set of plausible patches.
Conceptually, we could use any kind of APR tool, either search-
based repair or semantic-based repair. Except for the patches, we
will also record some intermediate results, e.g. the value of the patch
expression on each test, which will be used to generate questions
and answers in the following steps.

What Questions & Answers Generation Once the plausible
patches are generated, we then set the patched expressions at each
location as holes𝐻={ℎ1,ℎ2, ...ℎ𝑖 ,...ℎ𝑛 }. For each holeℎ𝑖 , we draw up
a what question which asks "what is the expected output of the hole
that can make the failing test pass?". These questions formulate the
expected behaviors of these holes. For the what question at hole
ℎ𝑖 , we then generate the answers by iterating the angelic values
𝑉={𝑣1, 𝑣2, ... 𝑣𝑖 ,... 𝑣𝑚 }. The angelic values are the produced values
by plausible patches applied at ℎ𝑖 . For instance, replacing ℎ𝑖 with
either plausible patches 𝑝1 or 𝑝2 can pass the failing test 𝑡 . Under 𝑡 ,
the values produced by patch 𝑝1 and 𝑝2 are 2 and 3, respectively.
Then, the answers to this what questions will be 2 or 3. Note that,
there could be multiple what questions and answers. The task of
picking the correct one (indicate the expected program behaviors)
is left to developers. To help developers understand the program
behaviors, we could also integrate the why question [4].

How Question & Answer Generation Once developers select
the correct answer (𝑣𝑖) to the what questions, we then draw up
how questions to realize the expected behaviors. Typically, the
how question asks how to fill the holes such that the program can
behave as expected. We then select the plausible patches that can
generate the expected values (𝑣𝑖). The plausible patches will be then
translated into the answers to the how questions. Just like the what
questions, there could be multiple answers (𝑝1, 𝑝2, 𝑝3 ...) to these
how questions. The developer will play the role of selecting the
correct answer from multiple plausible patches.

Patch Suggestion The generated questions and answers will be
sent to developers in an interactive way (e.g. interactive GUI). The
role of developers is twofold: (1) ask what question and select the
corresponding answer to indicate the expected program behaviors
(2) ask how questions and choose correct answers to select patches.
This will finally lead developers to find a correct patch.

3 AN EXAMPLE
Listing 1 shows a FFmpeg buffer overflow vulnerability 1 which was
reported by OSS-Fuzz in 2017. This vulnerability is caused by incor-
rect bound checking when parsing media files. If remaining_space
is equal to width (line 3), an invalid buffer access will occur at line
1https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=1345

1 int rema in ing_space = frame_end−f rame − 3 ;
2 //correct patch: "frame_end-frame-3" → "frame_end-frame-4"
3 if (r ema in ing_space < width)
4 return AVERROR_INVALIDDATA ;
5 frame [0] = frame [1] = frame [width] =
6 frame [width +1] = by t e s t r e am_ge t _byte (gb) ;
7 frame += 2 ;
8 frame [0] = frame [1] = frame [width] =
9 //buffer overflow location
10 frame [width +1] = by t e s t r e am_ge t _byte (gb) ;
11 frame += 2 ;

Listing 1: Buffer overflow vulnerability in FFmpeg

10, since it will overwrite the memory locations after frame_end.
One correct patch for this vulnerability could be modifying the
assignment at line 2 from frame_end-frame-3 to frame_end-frame-4.

Given the failing test case that can trigger this bug, we first
use existing APR tools, e.g. Fix2Fit, to generate a set of patch
candidates. For instance, replacing the assignment at line 2 with
frame_end−frame−4, frame_end−frame−5, or frame_end−frame−6
can fix the failing test. Then, we set the right expression at line 2
as a hole and draw up the what question: “What is the expected
value of the hole to make the failing test pass?”. The answers to the
what question are the angelic values produced by plausible patches.
In this case, the angelic values are 8, 7 or 6, all of which can make
the failing test pass. If developers indicate 8 is the expected value,
we then create the how question: “How to fill the hole to generate
the expected value (8)?”. The answer to the how question is the
patch candidates (in this case, only frame_end−frame−4) that can
realize the expected value. Developers will play the role of selecting
the correct patches from those candidates. The proposed approach
provides a way to alleviate the over-fitting problem. Instead of
directly applying the patches, we involve developers in the patch
generation process in an interactive way, such that, the overfitted
patches (e.g. frame_end−frame−5) can be filtered out.

4 CONCLUSION
Automated program repairmay generate low-quality patches, which
prevents them being directly applied in the program. Usually, patches
are sent to developers to review. In this project, we envision an
interactive patch suggestion approach, which enables developers
to select and review patches via a few clicks. The potential benefits
of this approach include increasing the efficiency of auto-generated
patch review and reducing the burden of developers. We invite
the community to consider the deployment of automated program
repair in the interactive setting proposed in this position paper.

REFERENCES
[1] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:

Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA (2019).
[2] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. 2011. Angelic

debugging. In International Conference on Software Engineering. 121–130.
[3] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. 2019. Crash-avoiding

program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 8–18.

[4] Andrew Ko and Brad Myers. 2008. Debugging reinvented. In 2008 ACM/IEEE 30th
International Conference on Software Engineering. IEEE, 301–310.

[5] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. Sapfix: Automated end-to-end
repair at scale. In ICSE-SEIP (2019). IEEE, 269–278.

[6] Martin Monperrus, Simon Urli, Thomas Durieux, Matias Martinez, Benoit Baudry,
and Lionel Seinturier. 2019. Repairnator patches programs automatically. Ubiquity
2019, July (2019), 1–12.

	Abstract
	1 Introduction
	2 Methodology
	3 An Example
	4 Conclusion
	References

